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Study of Sine-Gordon equation

C.V. Anitha1, C.S. Asha2 and L.N. Achala3
1,2,3P. G. Department of Mathematics and Research Centre in Applied Mathematics

M. E. S. College of Arts, Commerce and Science
15th cross, Malleswaram, Bangalore - 560003.
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Abstract: In this paper, we solve Sine-Gordon equation using finite difference method and
variable separable method. Numerical solution of kink soliton, antikink soliton, kink-kink col-
lision, kink-antikink collision and breather are calculated using finite difference scheme. The
results obtained by numerical method are compared with the exact solution to prove the accu-
racy.

Keywords: Hyperbolic partial differential equation, Wave equation, Sine-Gordon equation,
Finite difference method, Kink collision, Anti-Kink collision, Breathers.

1 Introduction
The general second order linear partial differential equation is solved by many analytical and
numerical techniques [6]. All these type of equations are part of one or the other real world
problems. Originally, almost all mathematical modelling of real world problem are non-linear.But
there are some which are solved by using numerical techniques, these techniques are for under-
standing and solving mathematical problems by converting them into basic algebraic equations.
Almost all numerical methods involve large number of arithmetical operations, which can be
handled very easily due to the availability of digital computers. Here we restrict ourselves to
one of the celebrated equation called as Sine-Gordon equation. It is a non-linear hyperbolic
partial differential [2, 3] equation in 1 + 1 dimension, involving the D’Alembert operator and
the sine of the unknown function.It was first introduced by Edmond Bour in 1862 in the course
of study of surfaces of constant negative curvature as the Gauss-Codazzi equation for surfaces
of curvature. It was rediscovered by Frenkel and Kontorona in 1939 in the study of crystal dis-
locations. This equation attracted a lot of attention in the 1970s due to the presence of soliton
solutions.

An interesting feature of Sine-Gordon equation is the existence of soliton and multi-soliton
solution. [1, 5].Here we are studying one soliton solution, two soliton solution, which arises
from the possibilities of coupled kink and anti-kink behavior called as breather. Breathers are
of two types, standing breather and moving breather.

In mathematics and physics, a soliton is a self-reinforcing solitary wave packet, that main-
tains its shape while it propagates at a constant velocity. Solitons are the solutions of non-linear
dispersive partial differential equations. The soliton phenomenon was first described in 1834
by John Scott Russell. He discovered a solitary wave in the union Canal in Scotland. He repro-
duced the phenomenon in a wave tank and named it as the “Wave of translation”.

A kink is a soliton that brings in one vacuum state, u = 2kπ as x→∞ and ends in the next
higher vacuum state, u = 2(k+ 1)π as x→∞. Similarly an Anti-kink begins in a higher state
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to the left and ends up in lower state to the right. Two kink repel each other when they come
in contact. When a kink and Anti-kink collide, they temporarily combine and each emerges in
the same shape as before, at the next lower vacuum state.

Sine-Gordon equation [4] has applications in the propagation of waves on a liquid mem-
brane, one dimensional models for elementary particles, self-induced transparency of short
optical pulses, domain walls in ferro-electric and ferromagnetic materials, the propagation of
crystal effects and propagation of fluxons in a long Josephson junction. The huge success of
devices using Josephson functions or mechanical transmission lines has been a result of the
discovery of high temperature superconductors in the 1980s and also mechanical trasmission
line, u(x, t) describes an angle of rotation of the pendulums.

2 Method of solution

2.1 Numerical Scheme of Sine-Gordon equation
Consider an initial value problem for the Sine-Gordon equation

utt − uxx + sin(u) = 0, (1)

on the interval x ∈ [a, b] with initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x), (2)

and boundary conditions
ux(a, t) = 0, ux(b, t) = 0. (3)

Applying Explicit finite difference method [9, 10, 11] to equation (1), we get

ui,j+1 = −ui,j−1 + 2(1− α2)ui,j + α2(ui+1,j + ui−1,j −∆t2 sin(ui,j), (4)

where α =
∆t

∆x
, i = 0, . . . ,M and t = 0, . . . T .

Applying second initial condition, we get

ui,−1 = ui,1 − 2∆tg(xi) + δ(∆t2). (5)

Substituting equation (5) in (4), and replacing ui,j+1 by ui,1 and ui,j−1 by ui,−1, we get

ui,1 = ∆tg(xi) + (1− α2)ui +
α2

2
(ui+1 + ui−1)−

∆t2

2
sin(ui)−

δ

2
(∆t2). (6)

Since δ is a very small value hence it is neglected and replacing ui+1 = f(xi+1) , ui−1 =
f(xi−1) and ui = f(xi) in RHS, we get

ui,1 = ∆tg(xi) + (1− α2)f(xi) +
α2

2
(f(xi+1) + f(xi−1))−

∆t2

2
sin(f(xi)). (7)

Applying boundary conditions to equation (5), we get

ux(a, t) = 0⇔ u−1,j = u1,j,
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ux(b, t) = 0⇔ uM+1,j = uM,j. (8)

On simplifying equation (7) to matrix form, we get

u1 = ∆tγ + Au0 −
∆t2

2
β1. (9)

where

γ = (g(a), g(x1), . . . , g(xM−1), g(b))T ,

β1 = (sin(u0,0), sin(u0,1), . . . , sin(u0,M−1), sin(u0,M))T ,

A =



1− α2 α2 0 . . . 0
α2

2
1− α2 α2

2
. . . 0

0
α2

2
1− α2 . . . 0

. . . . . . . . . . . . . . .
0 . . . . . . α2 1− α2.


Clearly A is a M + 1×M + 1 tridiagonal square matrix. Equation (4) can also be written as

uj+1 = −uj−1 +Buj −∆t2β. (10)

where j = 1, 2, . . . , T − 1, β = (sin(uj,0), sin(uj,1), . . . , sin(uj,M−1), sin(ujM ))T and B is a
square matrix defined by B = 2A.

Applying explicit scheme to equation (1) and solving in the interval [−L,L] with boundary
conditions and following parameters.

• Taking Space interval L = 20.
• Space discretization step as ∆x = 0.2.
• Time discretization step as ∆t = 0.1.
• Amount of time steps as T = 100.
• Velocity of the Kink as C = 0.2.

The initial condition for the Kink is given by,

f(x) = 4 arctan

(
exp

(
x√

1− c2

))
, (11)

g(x) = −2
c√

1− c2

[
sech

(
x√

1− c2

)]
. (12)

The initial condition for the Anti-Kink is given by,

f(x) = 4 arctan

(
exp

(
− x√

1− c2

))
, (13)

g(x) = −2
c√

1− c2

[
sech

(
x√

1− c2

)]
. (14)

The initial condition for the Kink-Kink is given by,

f(x) = 4 arctan

(
exp

(
x+ L

2√
1− c2

))
+ 4 arctan

(
exp

(
x− L

2√
1− c2

))
, (15)
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g(x) = −2
c√

1− c2
. sech

(
x+ L

2√
1− c2

)
+ 2

c√
1− c2

. sech

(
x− L

2√
1− c2

)
. (16)

The initial condition for the Kink-AntiKink is given by,

f(x) = 4 arctan

(
exp

(
x+ L

2√
1− c2

))
+ 4 arctan

(
exp

(
−

x− L
2√

1− c2

))
, (17)

g(x) = −2
c√

1− c2
. sech

(
x+ L

2√
1− c2

)
− 2

c√
1− c2

. sech

(
x− L

2√
1− c2

)
. (18)

The initial condition for breather is given by,

f(x) = 0, (19)

g(x) = 4
√

1− c2. sech(x
√

1− c2). (20)

2.2 The solution of the Sine-Gordon equation by separation of variables
Consider an initial value problem for the Sine-Gordon equation [7]

uxx − utt = sinu. (21)

Consider a transformation,

v(x, t) = tan

(
1

4
u

)
, (22)

then,

uxx =
(1 + v2)4vxx − 4vx(2v)vx

(1 + v2)2
, (23)

utt =
(1 + v2)4vtt − 4vt(2v)vt

(1 + v2)2
, (24)

and using the trigonometric identity

sinu =
4v(1− v2)
(1 + v2)2

. (25)

Substituting equation (23), (24) and (25) in (21), we get

(1 + v2)(vxx − vtt − v)− 2v(v2x − v2t − v2) = 0. (26)

Let us consider the separation of variables in the form

v(x, t) = tan

(
1

4
u

)
=
φ(x)

ψ(t)
. (27)

Since, v(x, t) =
φ(x)

ψ(t)
, we get

vx =
φx
ψ
, vt =

−φψt
ψ2

. (28)
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vxx =
φxx
ψ
, vtt =

−φψψtt + 2φψ2
t

ψ3
. (29)

Substituting equation (28) and (29) in (26), we get

(φ2 + ψ2)

(
φxx
φ

+
ψtt
ψ

)
− 2(φ2

x + ψ2
t ) = φ2 − ψ2. (30)

Differentiating equation (30) with respect to x, we get

1

φφx
(φ2 + ψ2)

(
φxx
φ

)
x

+ 2

(
ψtt
ψ
− 1

)
− 2

φxx
φ

= 0. (31)

Differentiating equation (30) with respect to t, we get

1

ψψt
(φ2 + ψ2)

(
ψtt
ψ

)
t

+ 2

(
φxx
φ

+ 1

)
− 2

ψtt
ψ

= 0. (32)

Equation (28) can be rewritten as,

vxxv =
φxx
φ
, −

[
vtt
v

+
2vtψt
vψ

]
=
ψtt
ψ
. (33)

Substituting equation (33) in (31), we get

1

φφx

(
φxx
φ

)
x

=
2
[
vtt
v

+ 2vtψt

vψ
+ vxxv + 1

]
ψ2(v2 + 1)

. (34)

Substituting equation (33) in (32), we get

1

ψψt

(
ψtt
ψ

)
t

=
−2
[
vtt
v

+ 2vtψt

vψ
+ vxxv + 1

]
ψ2(v2 + 1)

. (35)

If
2
[
vtt
v

+ 2vtψt

vψ
+ vxxv + 1

]
ψ2(v2 + 1)

= −4k2, then equations (34) and (35) become

1

φφx

(
φxx
φ

)
x

= −4k2

− 1

ψψt

(
ψtt
ψ

)
t

= −4k2

Therefore, we get
1

φφx

(
φxx
φ

)
x

= − 1

ψψt

(
ψtt
ψ

)
t

= −4k2 (36)

and −4k2 is a separation constant.

Integrating equation (36) with respect to x gives

⇒ φxφxx = −4k2
φ3

2
φx + aφφx. (37)
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Integrating again with respect to x, we obtain

φ2
x = −k2φ4 + aφ2 + b. (38)

Similarly, integrating (36) twice with respect to t, we get

ψ2
t = k2ψ4 + cψ2 + d. (39)

where a, b, c and d are integrating constants.

Substituting a− c = 1 and b+ d = 0 and setting a = m2 and b = n2 in equation (38) and (39),
we get

φ2
x = −k2φ4 +m2φ2 + n2 and ψ2

t = k2ψ4 + (m2 − 1)ψ2 − n2, (40)

where m and n are integrating constants.

However, we solve these equations for the following special cases of interest:

Case 1: k = n = 0 and m > 1

Equation (40) becomes

φx = ±mφ, ψt = ±
√
m2 − 1ψ. (41)

The exact solution of equation (38) and (39) is given by,

φ(x) = a1 exp(±mx), ψ(t) = a2 exp(±
√
m2 − 1t), (42)

where a1 and a2 are integrating constants.

Substituting equation (42) in (27), we get

u(x, t) = 4 tan−1
[
α exp

(
± x± ut√

1− u2

)]
. (43)

where α =
a1
a2

and u =

√
m2 − 1

m
are constants.

Equation (43) can be rewritten as,

u(x, t) = 4 tan−1[α exp{m(x− ut)}]. (44)

Equation (44) represents the soliton solution of Sine-Gordon equation.

Equation (43) can also be written as

u(x, t) = 4 cot−1
[

1

α
exp{m(x− ut)}

]
. (45)

For α = 1, the above equation represents anti-soliton solution.

Furthermore, ux and ut also represent solitary wave solutions given by,

ux(x, t) = ±2m sec[m(x± ut) + logα], (46)

6
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ut(x, t) = ±2m
√
m2 − 1 sec[m(x± ut) + logα]. (47)

Case 2: k 6= 0, n = 0 and m2 < 1

Consider,

u(x, t) v −4 tan−1
[

m√
1−m2

.
sin(ωt+ a2)

cosh(mx+ a1)

]
. (48)

where m =
√

1−m2 = mu. This is known as breather solution of Sine-Gordon equation and
it also represents a pulse-type structure of a soliton.

In case of m� 1, m corresponds to a small amplitude breather solution.

Retaining the first term of equation (48) and by expanding the inverse tangent function for small
m, we get

u(x, t) ∼ 2im sec(mx) exp

[
i

(
1− m2

2

)
t

]
+ c.c. (49)

u(x, t) = A(x, t) exp(it), (50)

where A(x, t) satisfies the (1 + 1) dimensional non-linear Schrodinger equation.

2iAt − Axx − |A|2A = 0, (51)

where the term Att = O(m4), which is neglected.

Finally, more general solutions of equation (43) can be found in terms of elliptic functions.

3 Results and Discussion
The Sine Gordon equation which is converted into matrix form usively. Space time represen-
tation of the numerical solution of kink-kink collision and kink-antikink colling finite differ-
ence method. From the converted matrix and from the initial conditions of kink, anti-kink and
breathers we have found the numerical solutions for each initial conditions. Numerical solution
of kink soliton and Anti-kink soliton moving with velocity c = 0.2 is plotted in figure 1 and
2 respectision are shown in figure 3 and 4. Numerical solution of breather oscillating with the
frequency ω = 0.2 is plotted in figure 5 and breather solution for amplitude m = 0.8 is plotted
in figure 6.
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Figure 1: Numerical solution of Kink soliton moving with velocity c = 0.2

Figure 2: Numerical solution of Anti-Kink soliton moving with velocity c = 0.2

Figure 3: Numerical solution of kink-kink collision

Figure 4: Numerical solution of kink-antikink collision

Figure 5: Numerical solution of breather oscillating with the frequency ω=0.2

8



Figure 6: Solution of breather for m = 0.8
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15th cross, Malleswaram, Bangalore - 560003.
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Abstract: Differential Transform is a semi-analytical method to find the solution of vari-
ous equations such as Boundary Value Problems, Algebraic equations, linear and Non-linear
partial Differential equations and Integral equations. We have applied this method to obtain
an approximate solution to non-linear partial differential equations by converting into an ordi-
nary differential equation using a wave variable. We have compared the Differential transform
Method with other solutions to illustrate the accuracy obtained this method. We have also ap-
plied reduced differential transform method to solve Klein Gordon equation which plays an
important role in plasma physics, fluid dynamics and chemical kinematics to understand the
this technique which is powerful and effective.

Keywords: Wave variations, Nonlinear partial differential equation.

1 Introduction

The concept of Differential Transform(DT) was first introduced by Zhou [4] in solving linear
and nonlinear initial value problems in electrical circuit analysis. The Differential Transform
Method is the alternative way to find the Taylore series solution for the given differential equa-
tion and this method always coincides with the Taylor explanation of the exact solution because
it has small error. Differential Transform Method is the semi-analytical method used to find the
solution of various equations such as boundary value problems, algebraic equations, partial
differential equations, integral equations etc... This method provides the accurate values. The
main advantage of this method is that, it can be applied to various types of linear and nonlinear
differential and integral equations [8] which are homogeneous or inhomogeneous with constant
or with variable coefficients.

1.1 Definitions

• Taylore polynomial:
A Taylore polynomial of degree n is defined by

Pn(x) =
n∑
k=0

(f (k)(c))(x− c)k (1)

• Differential Transform:
suppose the function f(x) is continuously differentiable on the interval (x0 − r, x0 + r)
then the differential transform of the function f(x) for the kth derivative is defined as

11
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follows

F (k) =
1

k!

[
dkf(x)

dxk

]
x=x0

(2)

where f(x) is the original function and F (k) is the transformed function.

• Inverse differential transform:
The inverse differential transform of F (x) is defined as

f(x) =
∞∑
k=0

(x− x0)kF (k) (3)

2 Riccati’s Equation

The Riccati differential equation is named after the Italian nobleman count Francesco Riccati
(1676-1754)[4]. The applications of this equation can be found in optimal control, diffusion
problems, network synthesis, functional mathematics, Stochastic realization theory etc.. This
equation is one of the simplest nonlinear ordinary differential equation, which plays an im-
portant role in the solution of nonlinear integrable partial differential equations.Thus Riccati
equation plays an important role in the solution of various nonlinear systems.
The General form of the Riccati equation with variable coefficients is given by:

dy

dx
+ P (x)y(x) +Q(x)y2 = R(x) (4)

2.1 Solution of the Riccati equation with variable co-efficients using DTM

The Riccati equation with variable coefficients is given by

dy

dx
= p(x) + q(x)y + r(x)y2 (5)

y(0) = g(x) (6)

where p(x), q(x), r(x) and g(x) are functions of x.
Applying Differential Transform to equation(5), we get

DT [ dy
dx

] = DT [p(x) + q(x)y + r(x)y2]

(k + 1)T (k + 1) = P (k) +
k∑
l=0

Q(l)T (k − l) +
k−s∑
m=0

R(s)Y (m)T (k − s−m) (7)

where P (x), Q(x), R(x) and T (x) are the differential transforms of
p(x), q(x), r(x) and y(x) respectively.

12
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2.1.1 Problem 1

p(x) = 3, q(x) = −3x2, r(x) = −1 and g(x) = 1

then the Riccati equation takes the form

dy

dx
= 3 + 3x2y(x)− xy2(x) (8)

with initial condition y(0) = 1
Applying Differential Transform to (8) we get

DT [
dy

dx
] = DT [3 + 3x2y(x)− xy2(x)] (9)

DT [
dy

dx
] = DT [3] + 3DT [x2y(x)] +DT [xy2(x)]

(k+ 1)T (k+ 1) = 3δ(k) + 3
k∑
l=0

δ(l−2)T (k− l) +
k∑
s=0

k−s∑
m=0

δ(s−1)T (m)T (k−s−m) (10)

The inverse differential transform of y(x) is

y(x) =
∞∑
k=0

T (k)xk (11)

using the initial condition y(0) = 1 in equation (11), we get

T (0) = 1 (12)

For k = 0 in equation (10), we get
T (1) = 3 (13)

For k = 1 in equation (10), we get

2T (2) = δ(1) + 3δ(1) + 3
1∑
l=0

δ(l − 2)T (1− l) +
1∑
s=0

1−s∑
m=0

δ(s− 1)T (m)T (1− s−m)

T (2) = −1

2
(14)

For k = 2 in equation (10), we get

3T (3) = 3δ(2) + 3
2∑
l=0

δ(l − 2)T (2− l) +
2∑
s=0

2−s∑
m=0

δ(s− 1)T (m)T (2− s−m)

T (3) = −1 (15)

For k = 3 in equation (10), we get

4T (4) = 3δ(3) + 3
3∑
l=0

δ(l − 2)T (3− l) +
3∑
s=0

3−s∑
m=0

δ(s− 1)T (m)T (3− s−m)
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For k = 4 in equation (10), we get

5T (5) = 3δ(4) + 3
4∑
l=0

δ(l − 2)T (4− l) +
4∑
s=0

4−s∑
m=0

δ(s− 1)T (m)T (4− s−m)

T (5) =
7

10
(16)

similarly, for k = 5 ,6, 7, 8, 9, 10 . . . ,we get

T (6) = 3
8
, T (7) = −9

20
, T (8) = −9

20
, T (9) = 9

20
. . .

From equation (11), we get

y(x) = 1+3x−1

2
x2−x3+

1

4
x4+

7

10
x5+

3

8
x6− 9

20
x7− 9

20
x8+

133

2520
x9+

2099

5600
x10+− . . . (17)

2.2 General solution of Riccati’s equation
Let W(x) be the dependent variable in equation (4) then

y(x) =
W ′(x)

Q(x)W (x)
(18)

differentiating equation (18) w.r.t x, we get

y′(x) =
W ′′(x)

Q(x)W (x)
− Q′(x)W ′(x)

Q2(x)W (x)
− Q(x)W 2(x)

Q2(x)W 2(x)
(19)

substituting equations (18) and (19) in equation (4),we get

W ′′(x) +

[
P (x)− Q′(x)

q(x)

]
W ′(x)−R(x)q(x)W (x) = 0 (20)

Thus we get a second order linear differential equation to be solved by a particular method and
its general solution is given by

W (x) = c1W1(x) + c2W2(x) (21)

where c1 and c2 are arbitrary constant to be determined.
Substituting equation (21) in equation (18), we get

y(x) =
W ′

1(x) + CW ′
2(x)

Q(x) [W1(x) + CW2(x)]
, C =

c2
c1

(22)

consider the above example

dy

dx
= 3 + 3x2y(x)− xy2(x) (23)

comparing equation (23) with equation (4), we get

P (x) = 3, Q(x) = −3x2, R(x) = −1
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Substituting these values in equation (18), we get

y(x) =
W ′(x)

Q(x)W (x)
(24)

y′(x) =
W ′′(x)

xW (x)
− W ′(x)

x2W (x)
− x(W ′)2(x)

x2W 2(x)
(25)

using equation (24) and equation (25),equation (24) can be transformed into a second order
linear differential equation of the form[10],

xW ′′(x)− (1 + 3x3)W ′(x)− 3x2W (x) = 0 (26)

Applying Frobenious series solution method to equation (26), we get

W (x) = x2c0{1 +
4

5
x3 +

1

2
x6 +

8

33
x9 . . .} (27)

and from equation (24), we get

Y (x) = 1 +
{2 + 4x4 + 4x7 + 4

3
x9 + . . .}

{x2 + 4
5
x5 + 1

2
x8 + 8

33
x11 . . .}

(28)

Figure 1: Graph plotted using Maxima
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Figure 2: Graph plotted using Mathematica
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Figure 3: Graph plotted using Maxima

2.2.1 Problem 2

p(x) = x5 + 1, q(x) = −2x4, r(x) = x3 and g(x)

then the Riccati equation takes the form

dy

dx
= 1 + x5 − 2x4y(x) + x3y2(x) (29)

with initial condition y(0) = 0
Applying Differential Transform to (29) we get

DT [
dy

dx
] = DT [1 + x5 − 2x4y(x) + x3y2(x)] (30)

DT [ dy
dx

] = DT [1 + x5]− 2DT [x4y(x)] +DT [x3y2(x)]

(k+1)T (k+1) = δ(k)+δ(k−5)−2
k∑
l=0

δ(l−4)T (k−l)+
k∑
s=0

k−s∑
m=0

δ(s−3)T (m)T (k−s−m)

(31)
The inverse differential transform of y(x) is

y(x) =
∞∑
k=0

T (k)xk (32)

using the initial condition y(0) = 0 in equation 32,we get

T (0) = 0 (33)

For k = 0 in equation (31), we get
T (1) = 0 (34)

For k = 1 in equation (31), we get

2T (2) = δ(1) + δ(1− 5)− 2
1∑
l=0

δ(l − 4)T (1− l) +
1∑
s=0

1−s∑
m=0

δ(s− 3)T (m)T (1− s−m)

T (2) = 0 (35)
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For k=2 in equation (31), we get

3T (3) = δ(2) + δ(2− 5)− 2
2∑
l=0

δ(l − 4)T (2− l) +
2∑
s=0

2−s∑
m=0

δ(s− 3)T (m)T (2− s−m)

T (3) = 0 (36)

For k=3 in equation (31), we get

4T (4) = δ(3) + δ(3− 5)− 2
3∑
l=0

δ(l − 4)T (3− l) +
3∑
s=0

3−s∑
m=0

δ(s− 3)T (m)T (3− s−m)

T (4) = 0 (37)

For k=4 in equation (31), we get

4T (4) = δ(4) + δ(4− 5)− 2
4∑
l=0

δ(l − 4)T (4− l) +
4∑
s=0

4−s∑
m=0

δ(s− 3)T (m)T (4− s−m)

T (4) = 0 (38)

similarly, for k = 5 ,6, 7, 8, . . . ,we get

T (5) = T (6) = T (7) = T (8) = T (9) = T (10) = . . . = 0

From equation (32), we get

y(x) = x (39)

comparing equation (23) with equation (4), we get

P (x) = −3x2, Q(x) = −x3, R(x) = 3

Substituting these values in equation (18), we get

y(x) =
W ′(x)

Q(x)W (x)
(40)

y′(x) =
W ′′(x)

xW (x)
− W ′(x)

x2W (x)
− x(W ′)2(x)

x2W 2(x)
(41)

using equation (40) and equation (41),equation (40) can be transformed into a second order
linear differential equation of the form,

xW ′′(x) + (2x5 − 3)W ′(x)− (x4 + x9)W (x) = 0 (42)

Applying Frobenious series solution method [10] to equation (42), we get

W (x) = c1{x+
1

5
x6 . . .} (43)

and from equation (40), we get

Y (x) ≈ x (44)
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Figure 4: Graph plotted using Maxima

Figure 5: Graph plotted using Maxima

3 Differential Transform Method For Solving Partial Differ-
ential Equations

To solve Partial Differential Equation using DTM by a modified approach[6] we need to follow
the following steps first consider a general form of nonlinear equation

P (u, ut, ux, uxx, uxt, utt, uxxx, uxxt, . . .) = 0 (45)

second,we introduce the wave variable

ζ = λ(x− ct) (46)

so that
u(x, t) = U(ζ), (47)

where U(ζ) is the localized wave function travels with speed c. Thus the PDE is converted into
an ODE

P (U, cλU
′
, λU

′
, λ2U

′′
, cλ2U

′′
, λ3U

′′′
, cλ3U

′′′
. . .) = 0. (48)
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Third, we apply DTM to equation (48), we get

U(ζ) =
∞∑
k=0

F (k)αk (49)

where F (ζ) is the differential transform of U(ζ . finally, the approximate solution is

uappr(x, t) =
N∑
k=0

F (k)(λ(x− ct))k (50)

3.1 Problem 1
Consider the nonlinear Partial Differential Equation

ut = uxxt − ux − uux (51)

subjected to the initial condition

u(x, 0) =
1

cosh2(x
4
)

(52)

Now using the wave variable ζ = λ(x− ct), ((51) and (52)) converted to the ODE

(1− c)U + cλ2U
′′

+
1

2
U2 = 0 (53)

subjected to the initial condition
U(0) = 1 (54)

Applying the differential transform to (53) and (54), we get the following recursive formula

F (k + 2) =
1

cλ2(k + 1)(k + 2)

(
(c− 1)F (k)− 1

2

k∑
i=0

F (i)F (k − i)

)
(55)

and

F (0) = U(0), F (1) = U ′(0) = a, (56)

where a is a constant to be determined. Referring to equation (52), the approximate solution is

uappr(x, t) =
8∑

k=0

F (k)(λ(x− ct))k (57)

Using the initial condition (52), and by Maxima software, we have

uappr(x, t) = 1 + 0.0000492189(x− 1.33322t)− 0.062548(x− 1.33322t)2

− 4.10262 ∗ 10−6(x− 1.33322t)3 + 0.00260683(x− 1.33322t)4

+ 2.18047 ∗ 10−7(x− 1.33322t)5 − 0.0000923655(x− 1.33322t)6

− 9.47054 ∗ 10−9(x− 1.33322t)7 + 3.00882 ∗ 10−6(x− 1.33322t)8.

(58)

The exact solution is
u(x, t) =

1

cosh2(x
4
− t

3
)

(59)
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Figure 6: Graph plotted using Maxima

Figure 7: Graph plotted using Maxima

3.2 Problem 2
We consider the nonlinear PDE

ut = uxx − u3 + u (60)

subjected to the initial condition

u(x, 0) =
1

1 + e
x√
2

, (61)

Now using the wave variable ζ = λ(x− ct), (60) and (61) converted to the ODE

− cλU ′ − λ2U ′′ + 1

2
U3 − U = 0 (62)

subjected to the initial condition
U(0) = 0.5 (63)

Applying the differential transform to (62) and (63) , we get the following recursive formula

F (k+2) = −cF (k + 1)

λ(k + 2)
− F (k)

λ2(k + 1)(k + 2)
+

1

λ2(k + 1)(k + 2)

k∑
i=0

k−i∑
j=0

F (i)F (j)F (k−i−j)

(64)
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Referring (4), the approximate solution is

uappr(x, t) =
8∑

k=0

F (k)(λ(x− ct))k (65)

Using the initial condition (61), and by Maxima software, we have

uappr(x, t) = 0.5− 0.176469(x− 2.11966t)− 0.00047338(x− 2.11966t)2

+ 0.00768733(x− 2.11966t)3 − 0.000171119(x− 2.11966t)4

− 0.00028579(x− 2.11966t)5 − 0.0000347312(x− 2.11966t)6

+ 0.0000312117(x− 2.11966t)7 − 4.04237 ∗ 10−6(x− 2.11966t)8.

(66)

The exact solution is

u(x, t) =
1

1 + e
x√
2
− 3t

2

(67)

Figure 8: Graph plotted using Maxima

Figure 9: Graph plotted using Maxima

4 Reduced Differential Transform Method
One of the most important partial differential equations occurring in Applied Mathematics is
the Klein Gordon equation[6]. It plays an important role in plasma physics, fluid dynamics and
chemical kinematics.

utt − uxx + u+Nu(x, t) = f(x, t) (68)

subject to the initial conditions

u(x, 0) = g(x), ut(x, 0) = h(x) (69)
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4.1 Illustration of solution of Klein Gordon equation using Reduced Dif-
ferential Transform Method

Consider the nonlinear Klein Gordon equation

utt − uxx +
3

4
u− 3

2
u3 = 0 (70)

with initial conditions

u(x, 0) = −sech(x) ut(x, 0) =
1

2
sech(x)tanh(x) (71)

The exact solution of equation (70) and (71) is

u(x, t) = −sech(x+
t

2
) (72)

hence the transformed equation of (70)

(k + 2)!

k!
Uk+2(x) =

∂2

∂x2
Uk(x)− 3

4
Uk(x) +Nk(x) (73)

where, Nk(x) is the transformed form of 3
2
u3 and the transformed initial conditions are

U0(x) = −sech(x) U1(x) =
1

2
sech(x)tanh(x) (74)

substituting (74) successively into (73) we obtain Uk(x) values respectively. the {Uk(x)}3k=0

gives three term approximate solution of the problem given by

u(x, t) = t3((sech(x)tanh(x)3)/12− (5sech(x)3tanh(x))/12 + (sech(x)2tanh(x))/2

+(sech(x)2tanh(x))/2− (sech(x)tanh(x))/16)

+t2(−(sech(x)tanh(x)2)/2 + sech(x)3/2− (3sech(x)2)/4

+ (3sech(x))/8) + (tsech(x)tanh(x))/2− sech(x) (75)

Figure 10: DTM solution plotted using Maxima
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Figure 11: Exact solution plotted using Maxima

Figure 12: DTM and Exact plotted using Maxima
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Abstract: The method of multiple scales is significant in a variety of situations for extracting
the slow time dependence of patterns. This method comprises techniques used to construct uni-
formly valid approximations to the solutions of perturbation problems in which the solutions
depend simultaneously on widely different scale. In this report we have used classical example
of linear damped oscillator since Multiple Scale method obtains solutions that evolve aperi-
odical on a slow-time scale is more general method involving two form of the solution.Here
we have used two-time scale and derivative expansions. We have used derivative expansion
method for the Duffing equation and also to the Ricatti’s equation by illustrating the solutions
using graphs.

Keywords: Multiple scale, Aperiodical, Two-time scale, Derivative expansion, Duffing equa-
tion, Ricatti’s equation.

1 Introduction
Some natural process have more than one characteristic length or time scales associated with
them, for example turbulent flows where perturbation expansion fails to recognize non-uniformity
in the space/time scales [1]. Multiple-scale analysis is a global perturbation scheme that is use-
ful in a system characterized by disparate time scales, such as weak dissipation in an oscillator.
This effect could be insignificant on short time scales but it becomes important on long time
scales. Classical perturbation methods generally break down because of resonances that lead to
what are called as secular terms.The method of multiple scales comprises the techniques that
are used to construct uniformly valid approximations to the solutions of perturbation problems
[5]. In this the solution depends simultaneously on widely different scales. This is done by
introducing fast-scale and slow-scale variables for an independent variable and subsequently
treating these variables (fast and slow) as if they are independent. Let’s begin by describing the
exact solution and straight-forward expansion method for the linear damped oscillator.

1.1 The Linear Damped Oscillator
Consider the differential equation for the linear damped mass-spring system with no external
forces. The equation for displacement y(τ) is [1]

my′′ + cy′ + ky = 0 (1)

Where ’Prime’ denotes the differentiation with respect to τ . If initially the mass is released from
a positive displacement yi with no initial velocity, we have the following initial conditions:

y(0) = yi, y′(0) = 0 (2)
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Assume here that c� m, k.Choosing yi and
√
m

k
as the characteristic distance and character-

istic time respectively, we define the following dimensionless variables.

x = yi
y

t = τ√
m

k

Under this change of variables the dimensionless form of the differential equations (1) and (2)
becomes,

x′′ + 2εx′ + x = 0 (3)

x(0) = 1, x′(0) = 0 (4)

Where,

ε = c
2∗
√
mk
� 1

ε is a dimensionless parameter. The above equation is a linear oscillator with weak damping,
where time variable has been scaled by the period of the undamped system. This is the classical
example used to illustrate the method of multiple scales.

The exact solution of system equation (2) is given by

m2 + 2εm+ 1 = 0

x(t) = e−εt
[
cos
√

1− ε2t+
ε√

1− ε2
sin
√

1− ε2t
]

(5)

If oscillation is undamped i.e., if ε = 0

x(t) = cos t

Where both amplitude and phase of the oscillation remain constant. Equation (5) shows the
change in time in both amplitude and phase with the presence of damping. The drift of the am-
plitude with respect to time scale is ε−1 and the drift of the phase with respect to time scale is
ε−2. Both amplitude and phase with respect to time scale are longer for the basic oscillation (5)
does not have much amplitude left with respect to time as the phase as slipped. From equation
(5) we can write

x = cos t+O(1/ε) where t = O(1) (6)

Above equation is true, but is not valid for t = O(1/ε). The equation is not valid to

x = e−εt cos t+O(ε) where t = O(1/ε) (7)

If we consider the values of t which are O(1/ε) then equation (7) is not valid. The terms of the
ε2t must be preserved in the cosine function of equation (5).
Using binomial expansion , we have

√
1− ε2 = 1− ε2

2
− ε4

8
− ε6

16
− . . . (8)
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thus

x = e−εt cos(1− ε2

2
)t+O(ε) where t = O(1/ε2) (9)

Equation (9) is uniformly valid for t = O(1/ε2).
Consider only the uniformly valid leading order expansion then the second term of equation (5)
never contributes to O(ε) for all t.
By straight forward expansion of equation (3) to two-term approximate solution takes the form

x(t) = cos t+ ε(sin t− t cos t) (10)

2 The Method of Multiple Scales
Any asymptotic expansion of equation (5) must simultaneously depict both the decaying and
oscillatory behaviours of the solution in order to be uniformly valid solution in order to be
uniformly valid in t = O(1/εk). Here the Poincare-Lindstedt method fails in this case. The
Poincare-Lindstedt method is used to construct asymptotic approximation of periodic solutions,
but it can’t be used to obtain the solutions of a nonperodical, on a slow time scale. The method
of multiple scales is a more general approach that involve two key tricks. The first is the idea
of introducing scaled space and time coordinates to capture the slow modulation of the pattern,
and treating these as separate variables in addition to the original variables that must be retained
to describe the pattern state itself. This is essentially the idea of multiple scales [1]. The second
is the use of what are known as solvability conditions in the formal derivation. From analytical
solution (10) the functional dependence of x on t and ε is not disjoint because x depends on
the combination of εt as well as on the t and ε.
Thus in place of x = x(t; ε), we write

x = x̂(t, εt; ε)

We will return to the regular expansion equation (10) and rewriting it as

x(t) = cos t+ ε sin t− εt cos t (11)

As in the case of analytical solution, regular expansion shows that x depends on the combina-
tion of εt as well as on the individual t and ε. The trouble with the simple regular expansion
is that the small damping changes both the amplitude of the oscillation on a time scale ε−1 and
the phase of the oscillation on a time scale ε−2 by the slope accumulation of small effects. Thus
the oscillator has three processes acting on their time scales. First, there is an basic oscillation
on the time scale of 1 from the inertia causing the restoring force to over shoot the equilibrium
position. Then there is a small drift in the amplitude on the time scale of ε−1 and finally a small
drift in the amplitude on the time scale of ε−2 due to the small friction. We recognize these
three time scales by introducing three time variables.

T0 = t the fast time of the oscillation
T1 = εt the slower time of the amplitude drift
T2 = ε2t even slower time of the phase drift

The functions of T0 that are combined into factors due to rapidly changing features, while the
functions of T1 and T2 are combined into factors due to slowly changing features. Thus we
have a solution of the form
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x(t; ε) = x(T0, T1, T2; ε)

In general, if we choose n time scales for the expansion, we have a solution of the form

x(t; ε) = x(T0, T1, T2, · · · , Tn; ε) (12)

where the time scales are defined as T0 = t, T1 = εt, T2 = ε2t, · · · , Tn = εnt Thus, instead of
determining x as a function of t, we determine x as a function of T0, T1, · · · , Tn.

From the above time scale we understand that as real time t increases the fast time T0 increases
at the same rate, while the slower time Ti’s increase slowly. Using the chain rule we have

d

dt
=

∂

∂T0

∂T0
∂t

+
∂

∂T1

∂T1
∂t

+
∂

∂T2

∂T2
∂t

+ · · · (13)

d

dt
=

∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
+ · · · (14)

d2

dt2
=

∂2

∂T 2
0

+ 2ε
∂2

∂T1∂T0
+ ε2

(
∂2

∂T0∂T2
+

∂2

∂T 2
1

)
+ · · · (15)

Hence (1) becomes

∂2x

∂T 2
0

+2ε
∂2x

∂T0∂T1
+ε2

(
∂2x

∂T0∂T2
+
∂2x

∂T 2
1

)
+2ε

(
∂x

∂T0
+ ε

∂x

∂T1
+ ε2

∂x

∂T2

)
+x+ · · · = 0 (16)

x = 1 ,
∂x

∂T0
+ ε

∂x

∂T1
+ ε2

∂x

∂T2
+ · · · = 0 for T0 = T1 = · · · = 0 (17)

When t = 0, all T0, T1, · · · are zero. The benefits of introducing the multiple time variables are
not yet apparent. In fact, it appears that we have made the problem harder since the original
ordinary differential equation has been turned into a partial differential equation. Above said
statement is true, with the experience of this method it has shown that the disadvantages of
including this complications does not hold any advantages.
From pointing out to solution of equation (16) it is evident that it is not unique and that we also
need to impose more conditions for uniqueness on the solution. This freedom will enable us
to prevent secular terms from appearing in the expansion (at least over the time scales we are
using). We now seek an asymptotic approximation for x of the form,

x(t) ≡ x(T0, T1, T2, · · · , Tn; ε) ∼ x0(T0, T1, T2, · · · , Tn)

+εx1(T0, T1, T2, · · · , Tn) + ε2x2(T0, T1, T2, · · · , Tn) (18)

So it is understood that there are only two independent variables, t and ε, in equation (16);
Since Ti’s are functions of these two, and it is not independent. The principal steps in finding
the coefficients xn are carried out as though T0, T1, · · · , Tn and ε were independent variables.
This is one of the reason why these steps cannot be justified rigorously in advance, but are
merely heuristic. It must be marked that equation (16) is a generalized asymptotic expansion,
since equation (18) enters both the gauges (which are just the powers of equation (18) and
also through the coefficients xn by way of Ti. Also there is no general theorem allowing the
differentiation of a generalized asymptotic expansion term by term, it is nevertheless reasonable
to construct the coefficients of equation (16) on the assumption that such differentiation is
possible, and then to justify the resulting series by direct error estimation afterwards.
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3 Description of the Method
There are three variants of the method of multiple scales. We describe them by discussing the
linear damped oscillator.

x′′ + x = −2εx′ (19)

We choose this example because its exact solution is available for comparison with the approx-
imate solution obtained. Because we will be able to display the different variants of the method
more clearly without involving ourselves in algebra.

Let us assume a straight forward asymptotic expansion for small ε.

x = x0 + εx1 + ε2x2 + . . . (20)

Substituting equation (2) in (1) and equating coefficients of equal powers of ε to zero lead to

x′′0 + x0 = 0 (21)

x′′1 + x1 = −2x′0 (22)

x′′2 + x2 = −2x′1 (23)

The general solution of equation (3) is

x0 = a cos(t+ φ) (24)

Where a and φ are arbitrary constants. Substituting for x0 into equation (4) and solving the
resulting equation, we obtain

x1 = −at cos(t+ φ) (25)

Substituting for x1 in equation (5) and solving for x2, we obtain

x2 =
1

2
at2 cos(t+ φ) +

1

2
at sin(t+ φ) (26)

hence, we obtain

x = a cos(t+ φ)− εat cos(t+ φ) +
1

2
εa[t2 cos(t+ φ) + t sin(t+ φ)] +O(ε3) (27)

Substituting equation (12) and (15) into equation (1) and equating the coefficients of equal
powers of ε , we have

∂2x0
∂T 2

0

+ x0 = 0 (28)

∂2x1
∂T 2

0

+ x1 = −2
∂x0
∂T0
− 2

∂2x0
∂T0∂T1

(29)
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∂2x2
∂T 2

0

+ x2 = −2
∂x1
∂T0
− 2

∂2x1
∂T0∂T1

− ∂2x0
∂T 2

1

− 2
∂2x0
∂T0∂T2

− 2
∂x0
∂T1

(30)

The general solution of equation (28) is

x0 = A0(T1, T2)e
iT0 + A0(T1, T2)e

−iT0 (31)

where Ā0 is the complex conjugate of A0.
This solution is simply equivalent to equation (6) where a and φ are taken to be the functions
of the slow time scales T1 and T2 rather than being constants.
substituting for x0 from equation (31) into (29). we get,

∂2x1
∂T 2

0

+ x1 = −2i

(
A0 +

∂A0

∂T1

)
eiT0 + 2i

(
A0 +

∂A0

∂T1

)
e−iT0 (32)

The general solution of equation (32) is

x1 = A1(T1, T2)e
iT0 + A1(T1, T2)e

−iT0 −
(
A0 +

∂A0

∂T1

)
eiT0 −

(
A0 +

∂A0

∂T1

)
e−iT0 (33)

Comparing equation (33) with (31) shows that εx1 is a small correction to x only when εT0 = εt
is small. In order to obtain an expansion valid for times as large as O(ε−1), the secular terms,
T0exp(±iT0) in equation (33) must vanish ; i.e.,

A0 +
∂A0

∂T1
= 0 (34)

By integrating, we get
A0 = a0(T2)e

−T1 (35)

Then equation (33) becomes

x1 = A1(T1, T2)e
iT0 + A1(T1, T2)e

−iT0 (36)

Using x0 and x1 in equation (30), we obtain

∂2x2
∂T 2

0

+ x2 = −Q(T1, T2)e
iT0 +Q1(T1, T2)e

−iT0 (37)

where

Q(T1, T2) = 2iA1 + 2i
∂A1

∂T1
− a0e−T1 + 2i

∂a0
∂T2

e−T1 (38)

The terms on the RHS of equation (30) produce secular terms because the particular solution is

PI =
−Q(T1, T2)e

iT0 +Q1(T1, T2)e
−iT0

D2 + 1

x2 =
1

2
iQ(T1, T2)T0e

iT0 − 1

2
iQ1(T1, T2)T0e

−iT0 (39)

These secular terms makes ε2x2 the same order as εx1 when t is as large as O(ε−1). In order to
eliminate these secular terms, Q must vanish; that is
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A1 +
∂A1

∂T1
=

1

2
i

(
−a0 + 2i

∂a0
∂T2

)
e−T1 (40)

In general, one does not need to solve for x2 in order to arrive at equation (40). One needs only
to inspect equation (36) and eliminate terms that produce secular terms.
The general solution of equation (40) is

A1 =

[
a1(T2) +

1

2
i

(
−a0 + 2i

∂a0
∂T2

)
T1

]
e−T1 (41)

Substituting for A1 into equation (35), we obtain

x1 =

[
a1(T2) +

1

2
i

(
−a0 + 2i

∂a0
∂T2

)
T1

]
e−T1eiT0 + CC (42)

where CC is a complex conjugate of the preceding expression. However

x0 = [a0e
iT0 + a0e

−iT0 ]e−T1 (43)

Therefore, as T1 −→ ∞, although x0 and x1 −→ 0, εx1 becomes O(x0) as t increases to
O(ε−2). Thus the expansion x0 + εx1 breaks down for t as large as O(ε−2) unless the coeffi-
cients of T1 in the brackets in equation (42) vanish ; that is, unless

− a0 + 2i
∂a0
∂T2

= 0 (44)

by integrating, we get
a0 = a00e

−iT2/2 (45)

where a00 is constant. Then equation (41) becomes

A1 = a1(T2)e
−T1 (46)

Therefore

x = e−T1a00e
i(T0−T2/2) + a00e

−i(T0−T2/2) + ε[a1(T2)e
iT0 + a1(T2)e

−iT0 ] +O(ε2) (47)

The function a1(T2) can be determined by carrying out the expansion to third order

a1(T2) = a11e
−iT2/2 (48)

where a11 is a constant.
Replace Tn by εnt and put a00 = a

2
eiφ in equation (47). We get

x = e−εt
{a

2
eiφei(t−ε

2t/2) +
a

2
eiφe−i(t−ε

2t/2) + ε[a1(ε
2t)eit + a1(ε

2t)e−it]
}

+O(ε2)

x = e−εt
a

2

{
ei(t−ε

2t/2+φ) + e−i(t−ε
2t/2+φ)

}
+ e−εtε[a1(ε

2t)eit + a1(ε
2t)e−it] +O(ε2)

x = e−εta cos(t− ε2t/2 + φ) +R (49)

For linear equations such as equation (1), we may introduce the different time scales without
expanding x. Thus using equation (1) in (15), we obtain[

∂2

∂T 2
0

+ 2ε
∂2

∂T0∂T1
+ ε2

(
∂2

∂T 2
1

+ 2
∂2

∂T0∂T2

)
+ · · ·

]
x+ x
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= −2ε

(
∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
+ · · ·

)
x (50)

Equating the coefficients of like powers of ε to zero yields

∂2x

∂T 2
0

+ x = 0 (51)

2
∂2x

∂T0∂T1
= −2

∂x

∂T0
(52)

∂2x

∂T 2
1

+ 2
∂2x

∂T0∂T2
= −2

∂x

∂T1
(53)

The general solution of equation (51) is

x = A(T1, T2)e
iT0 + A(T1, T2)e

−iT0 (54)

Substituting into equation (51), we obtain(
∂A

∂T1
+ A

)
eiT0 −

(
∂A

∂T1
+ A

)
e−iT0 = 0 (55)

Since equation (55) is valid for all T0, the coefficients of exp(iT0) and exp(−iT0) must vanish
; that is

∂A

∂T1
+ A = 0 (56)

By integrating,we get
A = a(T2)e

−T1 (57)

Substituting equation (54) into (53) yields(
∂2A

∂T 2
1

+ 2i
∂A

∂T2
+ 2

∂A

∂T1

)
eiT0 + CC = 0 (58)

Thus
∂2A

∂T 2
1

+ 2i
∂A

∂T2
+ 2

∂A

∂T1
= 0 (59)

Substituting for A from equation (57) into (59) gives

2i
∂a

∂T2
− a = 0 (60)

Hence
a = a0e

−iT2/2 (61)

where a0 is a constant.
Therefore equation (54) becomes

x = a0e
−T1ei(T0−T2/2) + CC (62)

Expressing equation (62) in terms of t yields

x = ae−εt cos(t− ε2t/2 + φ) (63)

Equation (63) refers to the solution of (49) given in (1).
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4 Application of the Derivative-Expansion Method
The Derivative Expansion Method is a more general approach to solve a differential equation.
It constructs uniformly valid approximations to the solutions of perturbation problems in which
the solutions depend simultaneously on widely different scales.

5 The Duffing Equation
The second example to which we apply the derivative-expansion method is the Duffing equation

∂2u

∂t2
+ ω2

0u+ εu2 = 0 (64)

We assume that

u =
2∑

n=0

εnun(T0, T1, T2) +O(ε3) (65)

Then
d

dt
= D0 + εD1 + ε2D2 + · · ·+Dn =

∂

∂Tn
(66)

Substituting equation (65) and (66) into (64) and equating coefficients of each power of ε to
zero, we have

D2
0u0 + ω2

0u0 = 0 (67)

D2
0u1 + ω2

0u1 = −2D0D1u0 − u20 (68)

D2
0u2 + ω2

0u2 = −2D0D1u1 − 2D0D2u0 −D2
1 − 3u20u1 (69)

The solution of (65) is

u0 = A(T1, T2)e
iω0T0 + A(T1, T2)e

−iω0T0 (70)

Equation (68) then becomes

D2
0u1 + ω2

0u1 = −[2iω0D1A+ 3A2A]eiω0T0 − A3e3iω0T0 + CC (71)

In order that u1/u0 be bounded for all T0, terms that produce secular terms must be eliminated
Hence

2iω0D1A+ 3A2A = 0 (72)

D2u1 + ω2
0u1 = −A3e3iω0T0 + CC

and the solution for u1 becomes

u1 = B(T1, T2)e
iω0T0 +

A3

8ω2
0

e3iω0T0 + CC (73)

To solve (72), we let A = 1
2
aeiφ with real a and φ

∂a

∂T1
= 0 ,−ω0

∂φ

∂T1
+

3

8
a2 = 0 (74)
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By integrating, we get

u = a(T2) , φ =
3

8ω2
0

a2T1 + φ0(T2) (75)

substituting u0 and u1 into equation (69)

D2
0u2 + ω2

0u2 = − 3

8ω2
0

A5e5iω0T0 +

[
−3i

4ω0

D1A
3 − 3A2B − 3

4ω2
0

A4A

]
e3iω0T0

−
[
2D1iω0B + 2D2Aiω0 + 3D2

1A+ 3A2B + 6AAB +
3

8ω2
0

A
2
A3

]
eiω0T0 + CC

(76)

D2
0u2 + ω2

0u2 = − 3

8ω2
0

A5e5iω0T0 +

[
−3i

4ω0

D1A
3 − 3A2B − 3

4ω2
0

A4A

]
e3iω0T0

−Q(T1, T2)e
iω0T0 + CC (77)

where,

Q(T1, T2) = 2D1iω0B + 2D2Aiω0 + 3D2
1A+ 3A2B + 6AAB +

3

8ω2
0

A
2
A3 (78)

Secular terms are eliminated if

B = 0 (79)

and
2iω0D2A = − 3

8ω2
0

A
2
A3 (80)

With Q = 0, the solution of u2, disregarding the homogeneous solution, is

u2 =
1

64ω4
0

A5e5iω0T0 +
3

32ω4
0

A4Ae3iω0T0 − 3i

32ω3
0

A3D1e
3iω0T0 + CC (81)

Put A = 1
2
aeiφ in equation (80) and separating real and imaginary parts, we get

∂a

∂T2
= 0 ,−ω0

∂φ

∂T2
=

3

256ω2
0

a4 (82)

By integrating we get,

φ0 =
3

256ω3
0

a4T2 + χ (83)

where χ is constant

φ =
3

8ω0

a2T1 +
3

256ω3
0

a4T2 + χ (84)

Substituting for u0, u1, u2 into equation (65).keeping A = 1
2
aeiφ and expressing the result in
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terms of t

u = Aeiω0T0 + Ae−iω0T0 + ε

(
A3

8ω2
0

e3iω0T0 +
A

3

8ω2
0

e−3iω0T0

)

+ε2
(

1

64ω4
0

A5e5iω0T0 +
3

32ω4
0

A4Ae3iω0T0 − 3i

32ω3
0

A3D1e
3iω0T0

)
+ ε2

(
1

64ω4
0

A
5
e−5iω0T0 +

3

32ω4
0

A
4
Ae−3iω0T0 − 3i

32ω3
0

A
3
D1e

−3iω0T0

)
(85)

keeping A = 1
2
aeiφ and expressing the result in terms of t.we get

u = a cos(ωt+ χ) +
a3ε

32ω2
0

(
1 +

3a2ε

32ω2
0

− 3iD1ε

4ω3
0

)
cos 3(ωt+ χ)

+
a5ε2

1024ω4
0

cos 5(ωt+ χ) +O(ε3) (86)

where
ω = ω0 +

3

8ω0

a2ε+
3

256ω3
0

a4ε2 +O(ε3) (87)

6 Illustration of Multiple Scale Method to Ricatti’s Equation

y′ = 3 + 3t2y − tεy2 with y(0) = 1 (88)

Substituting equation (77) in (8) and equating the coefficients of ε, we get(
∂

∂T0
+ ε

∂

∂T1
+ · · ·

)
(y0 + εy1 + · · · ) = 3 + 3(T0 + εT1 + · · · )(y0 + εy1 + · · · )

− (T0 + εT1 + · · · )ε(y0 + εy1 + ε)2 (89)
∂y0
∂T0

= 3 + 3T0y0 (90)

∂y1
∂T0
− 3T0y1 = 3T1y0 − T0y20 −

∂y0
∂T1

(91)

The general solution of equation (9) is

y0 = e
3
2
T0

[√
3π√
2
erf

(√
3T0√
2

)
+ A

]
(92)

substitute y0 in (10) ,we get

y1 =
1

2
3
2

e
3
2
T 2
0

 1

π

√
2e
−3
2
T 2
0

π 3
2 e3T

2
0 erf

(√
3T0√
2

)2

− 2
3
2

√
3πT0e

3
2
T 2
0 erf

(√
3T0√
2

)
− 4
√
π


1

2
3
2

e
3
2
T 2
0

[
− 4√

3

(
√
πe

3
2
T 2
0 erf

(√
3T0√
2

)
−
√

6T0

)
2

3
2

3
e

3
2
T 2
0

]
+B (93)
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Figure 1: Variation of the Solution due to T0

Figure 2: Variation of the Solution due to T1
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Figure 3: Graph plotted using Mathematica
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Viscous fluid flow over a stretching sheet in the boundary
layer region
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Abstract: The mixed convection boundary layer flow of a quiescent viscous incompressible
fluid over a stretching vertical heated sheet is investigated. Using appropriate similarity vari-
ables, the governing system of partial differential equations is transformed into a system of
ordinary differential equations, which is then solved using power series as well as shooting
method.

Keywords: Mixed convection boundary layer flow, Incompressible fluid, Stretching sheet,
Power series, Shooting method.

1 Introduction
Mixed convection flows, occur when natural convection and forced convection mechanisms
act together to transfer heat. This is also defined as situations where both pressure forces and
buoyant forces interact. The study of heat transfer of combined free and forced convection flow
has fascinated the interest of many researchers over the last few decades. Mixed convection
flows arise in many transport processes both naturally and in engineering applications. They
play an important role in atmospheric boundary-layer flows, heat exchangers, solar collectors,
nuclear reactors and in electronic equipment. They appear in many industrial processes, such
as manufacture and extraction of polymer and rubber sheets, paper production, wire drawing
and glass-fiber production, melt spinning, continuous casting, etc. Mixed convection flow has
many industrial applications such as heat treatment of material traveling between a feed roll
and wind-up roll or conveyer belts, extrusion of steel, cooling of a large metallic plate in a
bath, liquid films in condensation process and in aerodynamics, etc. In addition it should be
mentioned that this type of flow plays a great role in thermal manufacturing applications and is
important in establishing the temperature distribution within buildings as well as heat losses or
heat loads for heating, ventilating and air conditioning systems. [4]

The aim of this paper is to study the two-dimensional mixed convection flow over a stretch-
ing sheet with boundary conditions.The governing equations are transformed into a system of
nonlinear ordinary differential equations, which are then solved numerically. Representative
results for the velocity and temperature profiles are presented for some values of the governing
parameters.

2 Method of Solution
Consider a two dimensional mixed convection boundary layer flow of a quiescent viscous in-
compressible fluid over a stretching vertical heated sheet which obey the power law relations
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qw = axn and Uw = bxm where qw and Uw are surface heat flux and stretching velocity re-
spectively, and a, b,m, n are constants. The rectangular coordinates (x, y) are chosen with the
x-axis along the stretching sheet and the y axis normal to the plate. Two equal and opposite
forces are impulsively applied along the x-axis so that the sheet is stretched, keeping the origin
fixed in the fluid of ambient temperature T∞.

The continuous stretching surface is assumed to have the velocity and temperature of the form

U = Uw = bxm (1)
Tw = T∞ + qw = T∞ + axn (2)

The governing boundary layer equations [4, 5] are given by

∂u

∂x
+
∂v

∂y
= 0 (3)

u
∂u

∂x
+ v

∂v

∂y
= ν

∂u2

∂y2
± gβ(T − T∞) (4)

u
∂T

∂x
+ v

∂T

∂y
= α

∂u2

∂y2
(5)

and the corresponding boundary conditions are

u = U, v = 0, T = Tw at y = 0,
u = 0, T = T∞ as y →∞, (6)

where u and v are the components of the velocity in the x and y directions, ν is the kinematic
viscosity, g is the acceleration due to gravity, β is the coefficient of thermal expansion and α
is the thermal diffusivity of the fluid. The last term on the right hand side of (4) indicates the
influence of the thermal buoyancy force on the flow field with + and − sign indicating the
buoyancy assisting and buoyancy opposing flow regions.

The stream function ψ(x, y) is introduced such that

u =
∂ψ

∂y
and v = −∂ψ

∂x
(7)

Then, the equation of continuity is identically satisfied and equations (4), (5) reduce to

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
± gβ(T − T∞) (8)

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= α

∂u2

∂y2
(9)

Using equation (7), the boundary conditions (6) become

∂ψ

∂x
= 0,

∂ψ

∂y
= U, T = Tw at y = 0,

∂ψ

∂y
= 0, T = T∞ as y →∞.

(10)
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Now, we will convert the partial differential equations (8), (9) into ordinary differential equa-
tions. In accordance with the procedure of the law of similarity, let the velocity profile and the
temperature profile be

u = UF (η), (11)
T = T∞ + (Tw − T∞)θ(η) (12)

where

η = y

√
U

νx
= y

√
b

ν
x
m−1
2 (13)

is the similarity variable.

Using equations (7), (11) and (13), the stream function ψ(x, y) is given by

ψ =

∫
u dy =

√
bνx

m+1
2

∫
F (η) dη =

√
bνx

m+1
2 f(η) (14)

where f(η) =

∫
F (η) dη.

The velocity components and their derivatives, and the derivatives of the temperature compo-
nents are given by

u =
∂ψ

∂y
= bxmf ′(η), (15)

v = −∂ψ
∂x

= −
√
bν

(
m+ 1

2

)
x
m−1
2 f(η)− b

(
m− 1

2

)
xm−1yf ′(η), (16)

∂u

∂x
=

∂2ψ

∂x∂y
= bmxm−1f ′(η) + b

√
b

ν

(
m− 1

2

)
x
3m−3

2 yf ′′(η), (17)

∂u

∂y
=
∂2ψ

∂y2
= b

√
b

ν
x
3m−1

2 f ′′(η), (18)

∂2u

∂y2
=
∂3ψ

∂y3
=
b2

ν
x2m−1f ′′′(η) (19)

∂T

∂x
= anxn−1θ(η) + a

√
b

ν

(
m− 1

2

)
x
2n+m−3

2 yθ′(η) (20)

∂T

∂y
= a

√
b

ν
x
2n+m−1

2 θ′(η) (21)

∂2T

∂y2
=
ab

ν
xn+m−1θ′′(η) (22)

Substituting equations (15)-(22) in equations (8), (9), we get

f ′′′(η) +

(
m+ 1

2

)
f(η)f ′′(η)−mf ′2(η) + λθ(η) = 0, (23)
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1

Pr
θ′′(η) +

(
m+ 1

2

)
f(η)θ′(η)− nf ′(η)θ(η) = 0, (24)

and the corresponding boundary conditions are

f(η) = 0, f ′(η) = 1, θ(η) = 1 at η = 0,

f ′(η) = 0, θ(η) = 0 as η →∞.
(25)

where λ = ±Grx

Re2x
, Gr =

gβ(Tw − T∞)x3

ν2
is the local Grashof number, Rex =

Ux

ν
is the local

Reynold’s number and Pr =
ν

α
is the Prandtl number.

2.1 Power Series Solution

The power series method is used to obtain power series solutions to the equations (23), (24).

We construct a series solution of the form

f(η) =
∞∑
k=0

ak
k!
ηk = a0 + a1η +

a2
2!
η2 +

a3
3!
η3 +

a4
4!
η4 +

a5
5!
η5 + . . . (26)

θ(η) =
∞∑
k=0

bk
k!
ηk = b0 + b1η +

b2
2!
η2 +

b3
3!
η3 +

b4
4!
η4 +

b5
5!
η5 + . . . (27)

Then,

f ′(η) =
∞∑
k=1

ak
(k − 1)!

ηk−1 = a1 + a2η +
a3
2!
η2 +

a4
3!
η3 +

a5
4!
η4 +

a6
5!
η5 + . . . (28)

f ′′(η) =
∞∑
k=2

ak
(k − 2)!

ηk−2 = a2 + a3η +
a4
2!
η2 +

a5
3!
η3 +

a6
4!
η4 +

a7
5!
η5 + . . . (29)

f ′′′(η) =
∞∑
k=3

ak
(k − 3)!

ηk−3 = a3 + c4η +
a5
2!
η2 +

a6
3!
η3 +

a7
4!
η4 +

a8
5!
η5 . . . (30)

θ′(η) =
∞∑
k=1

bk
(k − 1)!

ηk−1 = b1 + b2η +
b3
2!
η2 +

b4
3!
η3 +

b5
4!
η4 +

b6
5!
η5 + . . . (31)

θ′′(η) =
∞∑
k=2

bk
(k − 2)!

ηk−2 = b2 + b3η +
b4
2!
η2 +

b5
3!
η3 +

b6
4!
η4 +

b7
5!
η5 + . . . (32)

Using the boundary conditions (25) in equations (26)-(28), we obtain

a0 = 0, a1 = 1, b0 = 1. (33)
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Substituting equations (26)-(33) in equations (23), (24), we get

(a3 −m+ λ) +

{
a4 −

1

2
(3m− 1)a2 + λb1

}
η +

{
1

2
a5 −

1

4
(3m− 1)a22 −

1

2
(m− 1)a3

+
1

2
λb2

}
η2 +

{
1

6
a6 −

1

3
(2m− 1)a2a3 −

1

12
(m− 3)a4 +

1

6
λb3

}
η3 +

{
1

24
a7

− 1

48
(9m− 7)a2a4 −

1

12
(2m− 1)a23 +

1

12
a5 +

1

24
λb4

}
η4 + · · · · · · = 0

(34)(
1

Pr
b2 − n

)
+

{
1

Pr
b3 − na2 −

1

2
(2n−m− 1)b1

}
η +

{
1

2Pr
b4 −

1

2
na3

−1

2
(n−m− 1)b2 −

1

4
(4n−m− 1)a2b1

}
η2 +

{
1

6Pr
b5 −

1

12
(6n−m− 1)a3b1

−1

4
(2n−m− 1)a2b2 −

1

6
na4 −

1

12
(2n− 3m− 3)b3

}
η3 +

{
1

24Pr
b6

− 1

48
(8n−m− 1)a4b1 −

1

12
(3n−m− 1)a3b2 −

1

24
(4n− 3m− 3)a2b3 −

1

24
na5

− 1

24
(n− 2m− 2)b4

}
η4 + · · · · · · = 0

(35)

Equations (34) and (35) are identities and hence all coefficients of the various powers of η must
vanish identically. Thus, we have

b2 = nPr,

a3 = m− λ,

b3 = Pr

[
na2 +

1

2
(2n−m− 1)b1

]
,

a4 =
1

2
(3m− 1)a2 − λb1,

b4 = Pr

[
n
{

(m− λ) + (n−m− 1)Pr
}

+
1

2
(4n−m− 1)a2b1

]
,

a5 =
1

2
(3m− 1)a22 + (m− 1)(m− λ)− λnPr,

b5 =
1

2
Pr

[
n
{

(3m− 1) + 2(4n− 3m− 3)Pr
}
a2 +

{
m(6n−m− 1)− λ(7n−m− 1)

+ (2n−m− 1)(2n− 3m− 3)Pr
}
b1

]
,

a6 =

[
1

4
(19m2 − 18m+ 3)− λ

{
2(2m− 1) + nPr

}]
a2 −

1

2
λ
{

(m− 3)

+ (2n−m− 1)Pr
}
b1,

b6 = Pr

[
n
{

(m− 1)(m− λ)− {(4m2 − 7mn+ 6n+ 2m− 2) + 2λ(n−m− 1)}Pr

+ (n−m− 1)(n− 2m− 2)Pr2
}

+
1

2
n
{

(3m− 1) + 2(4n− 3m− 3)Pr
}
a22

+
1

4

{
(3m− 1)(8n−m− 1) + 2(12n2 + 5m2 − 19mn− 19n+ 10m
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+ 5)Pr
}
a2b1

]
,

a7 =
1

4
(3m− 1)(9m− 5)a22 −

1

2
λ
{

(9m− 7) + (4n−m− 1)Pr
}
a2b1

+ 2(m− λ)
{

(2m2 − 2m+ 1)− λ(2m− 1)
}

+ λn
{

(2−m− λ)

− (n−m− 1)Pr
}

Pr, . . . . . . (36)

Substituting equations (33) and (36) in equations (26) and (27) gives

f(η) = η +
α

2!
η2 +

1

3!
(m− λ)η3 +

1

4!

{
α

2
(3m− 1)− λβ

}
η4 +

1

5!

{
α2

2
(3m− 1)

+ (m− 1)(m− λ)− λnPr

}
η5 +

1

6!

[
α
{1

4
(19m2 − 18m+ 3)− λ(4m− 2

+ nPr)
}
− λβ

2

{
(m− 3) + (2n−m− 1)Pr

}]
η6 +

1

7!

[
α2

4
(3m− 1)(9m− 5)

− λαβ

2

{
(9m− 7) + (4n−m− 1)Pr

}
+ 2(m− λ)

{
(2m2 − 2m+ 1)

− λ(2m− 1)
}

+ λn
{

(2−m− λ)− (n−m− 1)Pr
}

Pr

]
η7 + · · · · · · , (37)

θ(η) = 1 + βη +
nPr

2!
η2 +

Pr

3!

{
nα +

β

2
(2n−m− 1)

}
η3 +

Pr

4!

[
n
{

(m− λ) + (n

−m− 1)Pr
}

+
αβ

2
(4n−m− 1)

]
η4 +

Pr

2.5!

[
nα
{

(3m− 1) + 2(4n− 3m

− 3)Pr
}

+ β
{
m(6n−m− 1)− λ(7n−m− 1) + (2n−m− 1)(2n− 3m

− 3)Pr
}]
η5 +

Pr

6!

[
n
{

(m− 1)(m− λ)− {(4m2 − 7mn+ 6n+ 2m− 2)

+ 2λ(n−m− 1)}Pr + (n−m− 1)(n− 2m− 2)Pr2
}

+
α2n

2

{
(3m− 1)

+ 2(4n− 3m− 3)Pr
}

+
αβ

4

{
(3m− 1)(8n−m− 1) + 2(12n2 + 5m2

− 19mn− 19n+ 10m+ 5)Pr
}]
η6 (38)

where α = a2 = f ′′(0) and β = b1 = θ′(0). We have obtained the values for α and β
numerically for different values of m, n, λ and Pr which is described in the next subsection.

2.2 Numerical Solution

The shooting method [6] is used to obtain numerical solutions to the equations (23), (24) along
with the boundary conditions (25). Figure 1 and Figure 2 show the velocity distribution and
temperature distribution respectively in the boundary layer on a stretching sheet for Pr = 1,
λ = 0.1, n = 1 and different values of m. The values of the functions f , f ′, f ′′, θ(η) and θ′(η)
for Pr = 1, λ = 0.1, n = 1 and different η, m are listed in Table 1.
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Figure 1: Velocity distribution in the boundary layer on a stretching sheet for Pr = 1,
λ = 0.1, n = 1 and different m

Figure 2: Temperature distribution in the boundary layer on a stretching sheet for Pr = 1,
λ = 0.1, n = 1 and different m
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Table 1: The functions f , f ′, f ′′, θ(η) and θ′(η) in the boundary layer on a stretching sheet for
Pr = 1, λ = 0.1, n = 1 and different η, m

η f(η) f ′(η) f ′′(η) θ(η) θ′(η)
m = 1/3

0.0 0.000000 1.000000 -0.618315 1.000000 -0.997356
1.0 0.731920 0.505363 -0.372143 0.372330 -0.362782
2.0 1.085888 0.233451 -0.187005 0.142662 -0.134901
3.0 1.245682 0.102909 -0.085774 0.055971 -0.051915
4.0 1.315318 0.044303 -0.037681 0.022253 -0.020435
5.0 1.345107 0.018814 -0.016219 0.008905 -0.008138
6.0 1.357694 0.007896 -0.006911 0.003575 -0.003258
7.0 1.362942 0.003256 -0.002928 0.001439 -0.001308
8.0 1.365078 0.001293 -0.001236 0.000581 -0.000525
9.0 1.365898 0.000466 -0.000521 0.000236 -0.000211

10.0 1.366165 0.000117 -0.000219 0.000098 -0.000085
11.0 1.366198 -0.000029 -0.000092 0.000042 -0.000034
12.0 1.366134 -0.000091 -0.000039 0.000019 -0.000014

m = 1/9
0.0 0.000000 1.000000 -0.730527 1.000000 -0.989565
1.0 0.696825 0.450366 -0.391262 0.377821 -0.360503
2.0 0.990356 0.169970 -0.190752 0.147586 -0.137788
3.0 1.084837 0.035642 -0.090036 0.056767 -0.056799
4.0 1.084999 -0.027360 -0.041849 0.018171 -0.025038
5.0 1.041295 -0.056206 -0.018582 0.000822 -0.011462
6.0 0.978065 -0.068334 -0.006971 -0.007118 -0.005179
7.0 0.907410 -0.071981 -0.000959 -0.010573 -0.002078
8.0 0.835567 -0.071175 0.002240 -0.011766 -0.000479
9.0 0.765843 -0.067990 0.003951 -0.011781 0.000359

10.0 0.700001 -0.063547 0.004833 -0.011181 0.000790
11.0 0.638953 -0.058483 0.005233 -0.010276 0.000993
12.0 0.583113 -0.053178 0.005340 -0.009239 0.001064

m = 1
0.0 0.000000 1.000000 -0.951021 1.000000 -1.012330
1.0 0.644850 0.385371 -0.368531 0.359612 -0.370800
2.0 0.892776 0.147677 -0.142062 0.127611 -0.132671
3.0 0.987566 0.056298 -0.054407 0.045043 -0.046954
4.0 1.023647 0.021397 -0.020705 0.015884 -0.016545
5.0 1.037362 0.008147 -0.007836 0.005618 -0.005820
6.0 1.042606 0.003142 -0.002952 0.002008 -0.002046
7.0 1.044655 0.001259 -0.001109 0.000739 -0.000719
8.0 1.045504 0.000552 -0.000417 0.000293 -0.000253
9.0 1.045901 0.000285 -0.000158 0.000137 -0.000089

10.0 1.046127 0.000183 -0.000062 0.000082 -0.000031
11.0 1.046287 0.000142 -0.000026 0.000062 -0.000011
12.0 1.046419 0.000124 -0.000013 0.000055 -0.000004
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3 Results and Discussion
The nonlinear ordinary differential equations (23) and (24) subject to the boundary conditions
in (24) are solved using Power series method for some values of Prandtl number Pr, buoy-
ancy parameter λ and other parameters m and n. To validate the results obtained, we also
have solved this system of equations using shooting method for certain values of parameters.
Velocity profiles as well as temperature profiles are presented for different values of the gov-
erning parameters. The comparisons show excellent agreement between the results obtained
for different values of governing parameters.
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Abstract: The steady boundary layer flow of a wedge submerged in an incompressible fluid
of very small viscosity is investigated. Using appropriate similarity variables, the governing
system of partial differential equations is transformed into an ordinary differential equation,
which is then solved using power series as well as shooting method.
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1 Introduction
A fluid may be defined as a substance in which the molecules of the substance are separated by
a small gap. A fluid is also a substance that deforms continuously when subjected to stresses
however small it may be constituting a flow. The theory of fluid flow (incompressible or com-
pressible fluid) is based on the Newtonian mechanics. The concept of continuum is an ideal-
ization of continuous description of matter where the properties of matter such as density, vis-
cosity, thermal conductivity, temperature etc. are considered as continuous function of space
variables and time.

Fluid mechanics is one of the oldest branches of physics and the foundation for the un-
derstanding of many other aspects of applied sciences and engineering. It is a subject of
widespread interest in almost all fields of engineering as well as biology, meteorology, physical
chemistry and geophysics [1, 2, 3].

1.1 Boundary Layer Theory
As an object moves through a fluid, or as a fluid moves past an object, the molecules of the
fluid near the object are disturbed and move around the object. Forces are generated between
the fluid and the object. The magnitude of these forces depend on the shape of the object, the
speed of the object, the mass of the fluid along the object and on two other important properties
of the fluid; the viscosity, or stickiness, and the compressibility, or springiness, of the fluid.
Thus if a fluid flows in the presence of an obstacle, then the obstacle will experience two types
of forces,

1. drag force in the direction of motion of the fluid,

2. lift force in a direction normal to the flow direction.

These two forces are produced by tangential and normal stresses. The shearing stress i.e., the
drag due to tangential stress is called friction or skin friction or viscous drag. The drag due to
normal stress is called pressure drag. Thus flows constrained by solid surfaces can typically be
divided into two regions as below,
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1. Boundary Layer Region: Flows near a bounding surface with significant velocity with
gradients normal to the solid body and shear stresses in this region are predominant.

2. Potential Flow Region: Flows far from bounding surface with negligible velocity gra-
dients, negligible shear stresses where inertia effects are important.

1.2 Boundary layer equations
The boundary layer theory was first developed by Ludwig Prandtl in 1904. He gave a con-
vincing explanation for motion of fluid around objects and this led to major advances in fluid
dynamics. The detailed analysis of the flow within the boundary layer region is very important
for many engineering problems and aerodynamics. [4]

Prandtl considered the two dimensional flow around a wedge profile submerged in an
incompressible fluid of a very small viscosity. At the leading stagnation point, the thickness of
the boundary layer is zero and it grows slowly towards the rear of the wedge. Within a very thin
boundary layer of thickness δ a large velocity gradient exists. The equations of the continuity
and momentum without body force are given by

∂u

∂x
+
∂v

∂y
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
, (3)

where u and v are the components of the velocity in the x and y directions respectively, ρ is the
density, p is the pressure and ν is the kinematic viscosity of the fluid.

In order to compare the order of magnitude of the individual terms, it is more advantageous to
put the equations (1)-(3) in the non-dimensional form by letting

x∗ =
x

l
, y∗ =

y

δ
, u∗ =

u

U
,

v∗ =
v

V
, t∗ =

t

l/U
, p∗ =

p

p∞
,

(4)

where l, δ, U , V and p∞ are the reference values of the corresponding quantities x, y, u, v and p.

In view of equation (4), the equations (1)-(3) become

∂u∗

∂x∗
+
V l

Uδ

∂v∗

∂y∗
= 0, (5)

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+
V l

Uδ
v∗
∂u∗

∂y∗
= − p∞

ρU2

∂p∗

∂x∗
+

1

Re

(
∂2u∗

∂x∗2
+
l2

δ2
∂2u∗

∂y∗2

)
, (6)

V

U

∂v∗

∂t∗
+
V

U
u∗
∂v∗

∂x∗
+
V 2L

U2δ
v∗
∂v∗

∂y∗
= − p∞l

δρU2

∂p∗

∂y∗
+

1

Re

V

U

(
∂2v∗

∂x∗2
+
l2

δ2
∂2v∗

∂y∗2

)
, (7)

where Re =
Ul

ν
is the Reynolds number.
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Integrating equation (5) with respect to y∗, and using the condition (v∗)y∗=1 = 1 and (v∗)y∗=0 =
0,

V

U
= −δ

l

∫ 1

0

∂u∗

∂x∗
dy∗. (8)

Since the integral in the above equation is of order unity,
V

U
is of order

δ

l
. Hence V � U . By

neglecting the terms of the order of δ and smaller from system of equations (5)-(7), we obtain
the following equations

∂u∗

∂x∗
+
V l

Uδ

∂v∗

∂y∗
= 0, (9)

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+
V l

Uδ
v∗
∂u∗

∂y∗
= − p∞

ρU2

∂p∗

∂x∗
+

1

Re

l2

δ2
∂2u∗

∂y∗2
, (10)

p∞l

δρU2

∂p∗

∂y∗
= 0. (11)

Reverting the dimensional variables in equations (9)-(11), we get

∂u

∂x
+
∂v

∂y
= 0, (12)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
, (13)

∂p

∂y
= 0, (14)

with the boundary conditions

u = v = 0 at y = 0,

u = U(x, t) as
y

δ
→∞.

(15)

The above equations describe about the unsteady two-dimensional viscous flow around a wedge
profile submerged in incompressible fluid. From the equations (12)-(14), it is clear that the u, v
and p are the variables to be determined. Equation (14) shows that the normal pressure gradient
is negligible compared with other terms. If U(x, t) is the velocity of the fluid in the potential
flow then from the equation (13), we have

− 1

ρ

∂p

∂x
=
∂U

∂t
+ U

∂U

∂x
. (16)

The system of equations (12)-(14) with (16) are collectively called as Prandtl boundary
layer equations. These equations are simpler form of the Navier-Stokes equation, but the closed
form solution for these equations is available only for few cases. However the study of the
behavior of solutions of the boundary layer equations governing the flow field has established
an important branch of theoretical fluid mechanics [4, 5].
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1.3 Boundary layer flow past a wedge
A wedge is a portable inclined plane, and one of the six classical simple machines. It can be
used to separate two objects or portions of an object, lift up an object, or hold an object in place.
It functions by converting a force applied to its blunt end into forces perpendicular (normal) to
its inclined surfaces.

Consider the steady flow around a wedge submerged in an incompressible fluid of very
small viscosity. The wedge is placed along the direction of a uniform stream of velocity U∞.
Let the origin of coordinates be at the leading edge of the plate, the x-axis be along the plate
and the y-axis normal to the plate. In the present case the potential flow velocity U is given by

U(x) = U1x
m (17)

where U1 is a constant, m =
β

2− β
and πβ is the wedge angle.

The governing boundary layer equations are given by

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+ ν

∂2u

∂y2
, (18)

∂u

∂x
+
∂v

∂y
= 0, (19)

and the corresponding boundary conditions are

u = v = 0 at y = 0,
u = U(x) as y →∞, (20)

where u and v are the components of the velocity in the x and y directions, and ν is the kine-
matic viscosity.

The stream function ψ(x, y) is introduced such that

u =
∂ψ

∂y
and v = −∂ψ

∂x
(21)

Then, the equation of continuity is identically satisfied and equation (18) reduces to

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= U

dU

dx
+ ν

∂3ψ

∂y3
. (22)

Using equation (21), the boundary conditions (20) become

ψ = 0,
∂ψ

∂y
= 0, at y = 0,

∂ψ

∂y
= U(x), as y →∞.

(23)

Now, we will convert the partial differential equation (22) into an ordinary differential equation.
In accordance with the procedure of the law of similarity, let the velocity profile be

u = UF (η) (24)

52



MES Bulletin of Applied Sciences Volume 1, Issue 1, 2018

where

η = y

√
(m+ 1)U

2νx
= y

√
(m+ 1)U1

2ν
x
m−1
2 (25)

is the similarity variable.

Using equations (21), (24) and (25), the stream function ψ(x, y) is given by

ψ =

∫
u dy =

√
2U1ν

m+ 1
x
m+1
2

∫
F (η) dη =

√
2U1ν

m+ 1
x
m+1
2 f(η) (26)

where f(η) =

∫
F (η) dη.

The velocity components and their derivatives are given by

u =
∂ψ

∂y
= U1x

mf ′(η), (27)

v = −∂ψ
∂x

=

√
(m+ 1)U1ν

2
x
m−1
2

{(
m− 1

m+ 1

)
ηf ′(η)− f(η)

}
, (28)

∂u

∂x
=

∂2ψ

∂x∂y
= U1x

m−1
{
mf ′(η) +

(
m+ 1

2

)
ηf ′′(η)

}
, (29)

∂u

∂y
=
∂2ψ

∂y2
= U1

√
(m+ 1)U1

2ν
x
3m−1

2 f ′′(η), (30)

∂2u

∂y2
=
∂3ψ

∂y3
=

(m+ 1)U2
1

2ν
x2m−1f ′′′(η) (31)

Substituting equations (27)-(31) in equation (22), we get

f ′′′(η) + f(η)f ′′(η) +
2m

m+ 1
(1− f ′2(η)) = 0, (32)

that is,

f ′′′(η) + f(η)f ′′(η) + β(1− f ′2(η)) = 0, (33)

and the corresponding boundary conditions are

f(η) = 0, f ′(η) = 0, at η = 0,

f ′(η) = 1 as η →∞.
(34)

Equation (33) is a third order ordinary differential equation known as ‘Hartree’s equation’. It
is a particular case of the established Falkner and Skan equation. It is a non linear differential
equation whose numerical solutions for different values of β, were first investigated by D. R.
Hartree and later by other scientists. [5].
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2 Method of Solution

2.1 Power Series Solution
The power series method is used to obtain a power series solution to the Hartree’s equation (33).

We construct a series solution of the form

f(η) =
∞∑
k=0

ck
k!
ηk = c0 + c1η +

c2
2!
η2 +

c3
3!
η3 +

c4
4!
η4 +

c5
5!
η5 + . . . (35)

Then,

f ′(η) =
∞∑
k=1

ck
(k − 1)!

ηk−1 = c1 + c2η +
c3
2!
η2 +

c4
3!
η3 +

c5
4!
η4 +

c6
5!
η5 + . . . (36)

f ′′(η) =
∞∑
k=2

ck
(k − 2)!

ηk−2 = c2 + c3η +
c4
2!
η2 +

c5
3!
η3 +

c6
4!
η4 +

c7
5!
η5 + . . . (37)

f ′′′(η) =
∞∑
k=3

ck
(k − 3)!

ηk−3 = c3 + c4η +
c5
2!
η2 +

c6
3!
η3 +

c7
4!
η4 +

c8
5!
η5 . . . (38)

Using the boundary conditions (34) in equations (35) and (36), we obtain

c0 = 0, c1 = 0 (39)

Substituting equations (35)-(39) in equation (33), we get

(c3 + β) + c4η +
1

2
{c5 + (1− 2β)c22}η2 +

1

6
{c6 + 2(2− 3β)c2c3}η3 +

1

6
{c6+

2(2− 3β)c2c3}η3 +
1

24
{c7 + (7− 8β)c2c4 + 2(2− 3β)c23}η4 +

1

120
{c8

+(11− 10β)c2c5 + 5(3− 4β)c3c4}η5 +
1

720
{c9 + 4(4− 3β)c2c6

+2(13− 15β)c3c5 + 5(3− 4β)c24}η6 +
1

5040
{c10 + 2(11− 7β)c2c7

+42(1− β)c3c6 + 14(4− 5β)c4c5}η7 + · · · · · · = 0

(40)

This is an identity and hence all coefficients of the various powers of η must vanish identically.
Thus, we have

c3 = −β, c4 = 0, c5 = −(1− 2β)c22, c6 = 2(2− 3β)βc2,

c7 = −2(2− 3β)β2, c8 = (1− 2β)(11− 10β)c32,

c9 = −2(45− 113β + 66β2)βc22, c10 = 16(2− 3β)(8− 7β)β2c2, . . . . . .

(41)

Substituting equations (39) and (41) in equation (35) gives

f(η) =
α

2!
η2 − β

3!
η3 − (1− 2β)α2

5!
η5 +

2(2− 3β)βα

6!
η6 − 2(2− 3β)β2

7!
η7

+
(1− 2β)(11− 10β)α3

8!
η8 − 2(45− 113β + 66β2)βα2

9!
η9

+
16(2− 3β)(8− 7β)β2α

10!
η10 + · · ·

(42)
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where α = c2 = f ′′(0). We have obtained the value for α numerically for different values of m
which is described in the next subsection.

2.2 Numerical Solution
The shooting method [6] is used to obtain a numerical solution to the Hartree’s equation (33)
along with the boundary conditions (34). Figure 1 shows the velocity distribution in the bound-
ary layer on a wedge for different values of m. The values of the functions f , f ′ and f ′′ for
different η and m are listed in Table 1.

Figure 1: Velocity distribution in the boundary layer on a wedge for different m
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Table 1: The functions f , f ′ and f ′′ in the boundary layer on a wedge for different η and m

η f(η) f ′(η) f ′′(η) f(η) f ′(η) f ′′(η)
m = 0 m = 1/3

0.0 0.000000 0.000000 0.469600 0.000000 0.000000 0.927680
0.5 0.058643 0.234227 0.465030 0.105553 0.401455 0.678817
1.0 0.232990 0.460633 0.434379 0.381092 0.681115 0.444284
1.5 0.515032 0.661474 0.361805 0.768565 0.852621 0.250801
2.0 0.886797 0.816695 0.255669 1.220038 0.942249 0.118501
2.5 1.322438 0.916808 0.147475 1.702399 0.981165 0.045854
3.0 1.795568 0.969054 0.067711 2.197079 0.994959 0.014324
3.5 2.286407 0.990709 0.024415 2.695765 0.998904 0.003579
4.0 2.783887 0.997770 0.006875 3.195501 0.999808 0.000711
4.5 3.283332 0.999575 0.001509 3.695458 0.999973 0.000112
5.0 3.783235 0.999936 0.000258 4.195453 0.999997 0.000014
5.5 4.283221 0.999992 0.000034 4.695452 1.000000 0.000001
6.0 4.783220 0.999999 0.000004 5.195452 1.000000 0.000000
6.5 5.283220 1.000000 0.000000 5.695452 1.000000 0.000000

m = 1/9 m = 1
0.0 0.000000 0.000000 0.686708 0.000000 0.000000 1.232587
0.5 0.081607 0.317717 0.581817 0.133586 0.494649 0.758307
1.0 0.308206 0.578203 0.456174 0.459228 0.777864 0.398014
1.5 0.648481 0.771022 0.314139 0.887330 0.916167 0.176960
2.0 1.067497 0.893982 0.181944 1.361975 0.973216 0.065827
2.5 1.532776 0.959124 0.085920 1.854430 0.992851 0.020229
3.0 2.020443 0.987106 0.032456 2.352558 0.998424 0.005079
3.5 2.516865 0.996712 0.009706 2.852174 0.999716 0.001033
4.0 3.016027 0.999328 0.002286 3.352110 0.999958 0.000169
4.5 3.515869 0.999890 0.000423 3.852102 0.999995 0.000022
5.0 4.015845 0.999986 0.000061 4.352101 1.000000 0.000002
5.5 4.515842 0.999999 0.000007 4.852100 1.000000 0.000000
6.0 5.015842 1.000000 0.000001 5.352100 1.000000 0.000000
6.5 5.515842 1.000000 0.000000 5.852100 1.000000 0.000000

3 Results and Discussion
The nonlinear ordinary differential equations (33) subject to the boundary conditions in (34) is
solved using Power series method. To validate the results obtained, we also have solved this
equation using shooting method for certain values of the wedge angle m. Velocity profile is
presented for different values of m. The comparisons show excellent agreement between the
results obtained for different values of governing parameter.
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Abstract: Ordinary differential equations arise in the modelling of many physical phenom-
ena. In this paper, we use Haar wavelet method for the numerical solution of initial value
problem and boundary value problem and its system of equations. The basic idea of Haar
wavelet collocation method is to convert the ordinary differential equation into a system of al-
gebraic equations that involve a finite number of variables. The numerical results are compared
with the exact solution to prove the accuracy of the Haar wavelet method.

Keywords: Ordinary differential equations, Initial value problem, Boundary value problem,
Haar wavelets, Collocation points.

1 Introduction

The term “Differential equation” was coined by Leibnitz in 1676 for a relationship between
the two differentials dx and dy for the two variables x and y. A differential equation is an
equation containing the derivative of one or more dependent variables with respect to one or
more independent variables. If a differential equations contains only ordinary derivatives of
one or more dependent variables with respect to a single independent variables, it is said to
be an Ordinary Differential Equation (ODE). Ordinary Differential Equations are applicable in
Newton’s law of cooling, electrical circuits, modelling free mechanical oscillations, modelling
forced mechanical oscillations, computer exercise or activity etc.

Wavelets are mathematical functions that decompose data into different frequency compo-
nents and then each component is studied with a resolution matched to its scale. Wavelet theory
is the result of a multidisciplinary effort that brought together mathematicians, physicists and
engineers. This connection has created a flow of ideas that goes well beyond the construction
of new bases or transforms. Wavelet theory has become an effective tool for the development
of pure and applied mathematics. Wavelets are well-suited for approximating data with sharp
discontinuities. Wavelet representation is more accurate and useful in data compression, noise
removal, pattern classification and fast scientific computation.

In recent years, the wavelet approach for the solution of PDEs has become very popular.
Multi-resolution analysis of wavelets capture local features efficiently as such enables to detect
singularities, shocks, irregular structure and transient phenomena exhibited by the analyzed
equations. Haar wavelets are based on the functions which were introduced by the Hungarian
mathematician Alfred Haar in 1910. Haar’s contribution to wavelets is very evident. The Haar
wavelets are the simplest of the wavelet families [1].
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Chen and Hsiao [2] recommended to expand into the Haar series the highest order deriva-
tives appearing in the differential equation. This idea has been very prolific and it is being
abundantly applied for the solution of ODEs. The wavelet coefficients appearing in the Haar
series are calculated either using Collocation method or Galerkin method. Chang and Piau
[3], Fazal-i-Haq and Ali [4] have solved higher order boundary value and eigenvalue problems
using Haar wavelets. Lepik [5] applied the Haar wavelet method along with the segmentation
technique to solve differential equations. Lepik [6] used Haar wavelets for solving higher or-
der differential equations. Lepik [7] solved differential equations with the aid of nonuniform
Haar wavelets. Dhawan et. al. [8] used wavelet based numerical scheme to solve differential
equations. Hsiao and Wu [9] used Haar wavelets to solve time-varying functional differential
equations. Khalid et. al. [10] solved Airy differential equation using Haar wavelets. Shi and
Cao [11] applied Haar wavelets to solve eigenvalue problems of high order differential equa-
tions. Mohammadi et. al. [12] and Yousefi [13] used Legendre wavelets to solve singular
ordinary differential equations and Lane-Emden type differential equations respectively.

2 Preliminaries of Haar wavelets

The Haar wavelet family for x ∈ [0, 1] is defined as follows [1]

hi(x) =


1 for x ∈ [ξ1, ξ2)

−1 for x ∈ [ξ2, ξ3)

0 elsewhere

(1)

where

ξ1 =
k

m
, ξ2 =

k + 0.5

m
, ξ3 =

k + 1

m
(2)

In the above definition m = 2n, n = 0, 1, ..., J indicates the level of the wavelet; k =
0, 1, ...,m − 1 is the translation parameter. J is the maximum level of resolution. The in-
dex i in equation (1) is calculated by the formula i = m+k+1. In the case of minimum values
m = 1, k = 0 we have i = 2. The maximum value of i is i = 2M = 2J+1.

For i = 1 , h1(x) is assumed to be the scaling function which is defined as follows.

h1(x) =

1 for x ∈ [0, 1)

0 elsewhere
(3)

In order to solve integral or differential equations of any order, we need the following integrals.

pi(x) =

∫ x

0

hi(x)dx =


x− ξ1 for x ∈ [ξ1, ξ2)

ξ3 − x for x ∈ [ξ2, ξ3)

0 elsewhere

(4)
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qi(x) =

∫ x

0

pi(x)dx =



1

2
(x− ξ1)2 for x ∈ [ξ1, ξ2)

1

4m2
− 1

2
(ξ3 − x)2 for x ∈ [ξ2, ξ3)

1

4m2
for x ∈ [ξ3, 1]

0 elsewhere

(5)

3 Method of Solution and Examples

3.1 Ordinary Differential Equation (Initial Value Problem)
Example 1:

y′′ − 3y′ + 2y = 6e−x (6)

with initial conditions
y(0) = y′(0) = 2 (7)

The exact solution is
y(x) = 2e2x − ex + e−x (8)

Let the Haar Wavelet solution be in the form

y′′(x) =
2M∑
i=1

aihi(x) (9)

Integrating equation (9) w.r.t. x from 0 to x and using equation (7) gives

y′(x) = 2 +
2M∑
i=1

aipi(x) (10)

Integrating equation (10) w.r.t. x from 0 to x and using equation (7) leads to

y(x) = 2 + 2x+
2M∑
i=1

aiqi(x) (11)

Substituting equations (9), (10) and (11) in equation (6), we obtain

2M∑
i=1

ai{hi(x)− 3pi(x) + 2qi(x)} = 2− 4x+ 6e−x (12)

The wavelet collocation points are defined as

xl =
l − 0.5

2M
, l = 1, 2, . . . , 2M. (13)

Taking the collocation points x→ xl in equations (12) and (11), we get

2M∑
i=1

ai{hi(xl)− 3pi(xl) + 2qi(xl)} = 2− 4xl + 6e−xl (14)
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y(xl) = 2 + 2xl +
2M∑
i=1

aiqi(xl) (15)

The wavelet coefficients ai, i = 1, 2, . . . , 2M are obtained by solving the 2M system of equa-
tions in (14). These coefficients are then substituted in equation (15) to obtain the Haar wavelet
solution at the collocation points xl, l = 1, 2, . . . , 2M . The HWCM solution of the example
with J = 8 is given in Table 1. Figure 1 shows the comparison of the HWCM solution with the
exact solution.

3.2 Ordinary Differential Equation (Boundary Value Problem)
Example 2:

y′′ + y = 1 (16)

with boundary conditions
y(0) = 0, y(1) = 1 (17)

The exact solution is
y(x) = − cos(x) + cot(1) sin(x) + 1 (18)

Let the Haar Wavelet solution be in the form

y′′(x) =
2M∑
i=1

aihi(x) (19)

Integrating equation (19) w.r.t. x from 0 to x gives

y′(x) = y′(0) +
2M∑
i=1

aipi(x) (20)

Integrating equation (20) w.r.t. x from 0 to x and using equation (17) leads to

y(x) = xy′(0) +
2M∑
i=1

aiqi(x) (21)

Putting x = 1 in (21) and using equation (17), we obtain

y′(0) = 1−
2M∑
i=1

aiqi(1) (22)

Substituting equation (22) in equations (20) and (21) we get

y′(x) = 1 +
2M∑
i=1

ai[pi(x)− qi(1)] (23)

y(x) = x+
2M∑
i=1

ai[qi(x)− xqi(1)] (24)
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Substituting equations (24) and (19) in equation (16) gives

2M∑
i=1

ai{hi(x) + qi(x)− xqi(1)} = 1− x (25)

The wavelet collocation points are defined as

xl =
l − 0.5

2M
, l = 1, 2, . . . , 2M. (26)

Taking the collocation points x→ xl in equations (25) and (24) leads to

2M∑
i=1

ai{hi(xl) + qi(xl)− xlqi(1)} = 1− xl (27)

y(xl) = xl +
2M∑
i=1

ai[qi(xl)− xlqi(1)] (28)

The wavelet coefficients ai, i = 1, 2, . . . , 2M are obtained by solving the 2M system of equa-
tions in (27). These coefficients are then substituted in equation (28) to obtain the Haar wavelet
solution at the collocation points xl, l = 1, 2, . . . , 2M . The HWCM solution of the example
with J = 6 is given in Table 2. Figure 2 shows the comparison of the HWCM solution with the
exact solution.

3.3 System of Ordinary Differential Equations (Initial Value Problem)
Example 3:

u′ = v − x (29)

v′ = u+ x (30)

with initial conditions
u(0) = v(0) = 1 (31)

The exact solutions are
u(x) = ex − e−x − x+ 1 (32)

v(x) = ex + e−x + x− 1 (33)

Let the Haar Wavelet solutions be in the form

u′(x) =
2M∑
i=1

aihi(x) (34)

v′(x) =
2M∑
i=1

bihi(x) (35)

Integrating equations (34) and (32) w.r.t. x from 0 to x, and using equation equation (31) gives

u(x) = 1 +
2M∑
i=1

aipi(x) (36)
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v(x) = 1 +
2M∑
i=1

bipi(x) (37)

Substituting equations (34) and (37) in equation (29), and equations (35) and (36) in equation
(30), we get

2M∑
i=1

{aihi(x)− bipi(x)} = 1− x (38)

2M∑
i=1

{aipi(x)− bihi(x)} = −1− x (39)

The wavelet collocation points are defined as

xl =
l − 0.5

2M
, l = 1, 2, . . . , 2M. (40)

Taking the collocation points x→ xl in equations (38), (39), (36) and (37), we obtain

2M∑
i=1

[
hi(xl) −pi(xl)
pi(xl) −hi(xl)

] [
ai
bi

]
=

[
1− xl
−1− xl

]
(41)

u(xl) = 1 +
2M∑
i=1

aipi(xl) (42)

v(xl) = 1 +
2M∑
i=1

bipi(xl) (43)

The wavelet coefficients ai, bi i = 1, 2, . . . , 2M are obtained by solving the 4M system of
equations in (41). These coefficients are then substituted in equation (42) and (43) to obtain
the Haar wavelet solutions at the collocation points xl, l = 1, 2, . . . , 2M . The HWCM solution
of the example with J = 6 is given in Table 3. Figure 3 shows the comparison of the HWCM
solution with the exact solution.

3.4 System of Ordinary Differential Equations (Boundary Value Prob-
lem)

Example 4:
u′′ = 2v′ − 5u+ 4ex (44)

v′′ = 6u′ + 15v + 4ex (45)

with boundary conditions
u(0) = 1, v(0) = 1,

u(1) =
1

2
e(e4 + 1),

v(1) =
1

2
e(3e4 − 1)

(46)

The exact solutions are
u(x) =

1

2
ex(e4x + 1) (47)
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v(x) =
1

2
ex(3e4x − 1) (48)

Let the Haar Wavelet solutions be in the form

u′′(x) =
2M∑
i=1

aihi(x) (49)

v′′(x) =
2M∑
i=1

bihi(x) (50)

Integrating equation (49) and (50) w.r.t. x from 0 to x gives

u′(x) = u′(0) +
2M∑
i=1

aipi(x) (51)

v′(x) = v′(0) +
2M∑
i=1

bipi(x) (52)

Integrating equation (51) and (52) w.r.t. x from 0 to x, and using equation (46) leads to

u(x) = 1 + u′(0)x+
2M∑
i=1

aiqi(x) (53)

v(x) = 1 + v′(0)x+
2M∑
i=1

biqi(x) (54)

Putting x = 1 in equations (53) and (54), and using equation (46) we get

u′(0) =
1

2
e(e4 + 1)− 1−

2M∑
i=1

aiqi(1) (55)

v′(0) =
1

2
e(3e4 − 1)− 1−

2M∑
i=1

biqi(1) (56)

Substituting equation (55) in equations (51) and (53), and equation (56) in equations (52) and
(54), we obtain

u′(x) =
1

2
e(e4 + 1)− 1 +

2M∑
i=1

ai[pi(x)− qi(1)] (57)

v′(x) =
1

2
e(3e4 − 1)− 1 +

2M∑
i=1

bi[pi(x)− qi(1)] (58)

u(x) = 1 +
1

2
xe(e4 + 1)− x+

2M∑
i=1

ai[qi(x)− xqi(1)] (59)

v(x) = 1 +
1

2
xe(3e4 − 1)− x+

2M∑
i=1

bi[qi(x)− xqi(1)] (60)
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Substituting equations (49), (58) and (59) in equation (44), and equations (50), (57) and (60) in
equation (45) gives

2M∑
i=1

{ai[hi(x) + 5qi(x)− 5xqi(1)] + bi[−2pi(x) + 2qi(1)]} = −7 + 5x+ 4ex

+e(3e4 − 1)− 5

2
xe(e4 + 1)

(61)

2M∑
i=1

{ai[−6pi(x) + 6qi(1)] + bi[hi(x)− 15qi(x) + 15xqi(1)]} = 9− 15x+ 4ex

+3e(e4 + 1) +
15

2
xe(3e4 − 1)

(62)

The wavelet collocation points are defined as

xl =
l − 0.5

2M
, l = 1, 2, . . . , 2M. (63)

Taking the collocation points x→ xl in equations (61), (62), (59) and (60), we obtain

[
hi(xl) + 5qi(xl)− 5xlqi(1) −2pi(xl) + 2qi(1)
−6pi(xl) + 6qi(1) hi(xl)− 15qi(xl) + 15xlqi(1)

] [
ai
bi

]
=

[
−7 + 5xl + 4exl + e(3e4 − 1)− 5

2
xle(e

4 + 1)
9− 15xl + 4exl + 3e(e4 + 1) + 15

2
xle(3e

4 − 1)

] (64)

u(xl) = 1 +
1

2
xle(e

4 + 1)− xl +
2M∑
i=1

ai[qi(xl)− xlqi(1)] (65)

v(xl) = 1 +
1

2
xle(3e

4 − 1)− xl +
2M∑
i=1

bi[qi(xl)− xlqi(1)] (66)

The wavelet coefficients ai, bi i = 1, 2, . . . , 2M are obtained by solving the 4M system of
equations in (64). These coefficients are then substituted in equation (65) and (66) to obtain
the Haar wavelet solutions at the collocation points xl, l = 1, 2, . . . , 2M . The HWCM solution
of the example with J = 8 is given in Table 4. Figure 4 shows the comparison of the HWCM
solution with the exact solution.

Table 1: Comparison of HWCM solution and exact solution for J = 8 at different x of
Example 1
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x y(x)
HWCM Exact

0.000977 2.001957 2.001957
0.100586 2.244159 2.244159
0.200195 2.581746 2.581745
0.301758 3.044358 3.044355
0.499023 4.385975 4.385967
0.598633 5.352047 5.352035
0.698242 6.569198 6.569180
0.799805 8.126534 8.126506
0.899414 10.033808 10.033770
0.990230 12.401941 12.401887

Table 2: Comparison of HWCM solution and exact solution for J = 6 at different x of
Example 2

x y(x)
HWCM Exact

0.003906 0.002516 0.002516
0.105469 0.073152 0.073152
0.207031 0.153340 0.153340
0.300781 0.235125 0.235125
0.496094 0.426184 0.426184
0.597656 0.534653 0.534653
0.699219 0.647919 0.647918
0.792969 0.755719 0.755719
0.894531 0.874894 0.874894
0.996094 0.995358 0.995358
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Table 3: Comparison of HWCM solution and exact solution for J = 6 at different x of
Example 3

x u(x) v(x)
HWCM Exact HWCM Exact

0.003906 1.003906 1.003906 1.003937 1.003922
0.105469 1.105863 1.105860 1.116618 1.116618
0.207031 1.210001 1.209996 1.250063 1.250047
0.300781 1.309901 1.309893 1.391952 1.391935
0.496094 1.537309 1.537295 1.747312 1.747292
0.597656 1.670114 1.670098 1.965631 1.965609
0.699219 1.816008 1.815988 2.208397 2.208372
0.792969 1.964503 1.964479 2.455443 2.455416
0.894531 2.142887 2.142858 2.749550 2.749519
0.996094 2.342305 2.342271 3.073133 3.073097

Table 4: Comparison of HWCM solution and exact solution for J = 8 at different x of
Example 4

x u(x) v(x)
HWCM Exact HWCM Exact

0.000977 1.002935 1.002936 1.006854 1.006854
0.100586 1.379601 1.379689 1.927471 1.927429
0.200195 1.971125 1.971290 3.470632 3.470586
0.301758 2.936509 2.936743 6.105781 6.105762
0.499023 6.884791 6.885133 17.361071 17.361175
0.598633 10.883787 10.884166 29.013045 29.013238
0.698242 17.417552 17.417945 48.233120 48.233402
0.799805 28.384615 28.384982 80.704393 80.704733
0.899414 46.105713 46.105979 133.401316 133.401612
0.999023 75.202916 75.202940 220.177561 220.177563

Figure 1: Comparison of HWCM solution and exact solution of Example 1
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Figure 2: Comparison of HWCM solution and exact solution of Example 2

Figure 3: Comparison of HWCM solution and exact solution of Example 3

Figure 4: Comparison of HWCM solution and exact solution of Example 4

4 Conclusion
In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve
ordinary differential equations. The numerical scheme is tested for four examples. The ob-
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tained numerical results are compared with the exact solutions, and are found to be in good
agreement. Also,the method does not require conversion of a boundary value problem into
initial value problem by using shooting like procedure and hence has higher stability. Thus the
Haar wavelet method guarantees the necessary accuracy with a small number of grid points.
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1 Introduction
Mathematical Modelling is a technique which essentially consists of translating real world
problems into mathematical problems, solving the mathematical problems and interpreting
these solutions in the language of the real world. In other words, mathematical modelling
is a method of simulating real life situations with mathematical equations to forecast their fu-
ture behaviour [1].

The word Cryptography has its origin from the Greek words where Kryptos means “hid-
den“ and graphein is “to write”, meaning to write messages in secret codes [3]. Data that can be
read and understood without any special measures is called plain text. The method of disguis-
ing the plain text in such a way as to hide its substance is called Encryption. Encrypting plain
text results in meaningless letters called cipher text. The reverse of encryption is decryption.
The process of reverting the cipher texts to its original plain text is called Decryption.

Plain text
Encryption−−−−−→ Cipher text

Decryption−−−−−→ Plain text

Encryption and decryption requires the use of some secret information, usually referred to
as a key. The key is usually a short string of characters. Here we use the key in the form of
a matrix. The matrix used for encrypting (or encoding) a message is called Encoding matrix.
The matrix used to decrypt (or decode) a message is called Decoding matrix. One type of code
that is difficult to break makes use of a large matrix to encode a message. The receiver of the
message decodes the message using the inverse of the matrix [3] [4].

Applications of cryptography include data confidentiality and secrecy in transmissions, data
integrity, authentication, military communications, electronic banking and computer passwords
[5].

2 Method of Solution

2.1 Encoding a message when Enciphering matrix is known
METHOD 1: Using Substitution Ciphers
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• Convert the message into the numeric code using the alpha-numerical substitution starting
with A = 1 to Z = 26.

• Group the code into a sequence of 3 × 1 or 2 × 1 matrix depending on the order of the
enciphering matrix. Writing all these numeric codes together we name it as matrix P .

• Find C = AP where A is the enciphering matrix and P is the matrix containing numeric
code corresponding to the plain text vectors.

• Finally, convert the elements in C into a string that becomes the encrypted message. Now
the code has been enciphered. [3]

METHOD 2: Using Hill Ciphers
1. Convert the message into the numeric code using the alpha-numerical substitution starting

with A = 0 to Z = 25.
2. Group the code into a sequence of 3 × 1 or 2 × 1 matrix depending on the order of the

enciphering matrix. Writing all these numeric codes together we name it as matrix P .
3. Find C = AP where A is the enciphering matrix and P is the matrix containing numeric

code corresponding to the plain text vectors. If possible, replace each new vector by its
residue modulo 26.

4. Finally, convert each entry in C into its corresponding position in the alphabet. Now the
code has been enciphered. [5]

2.2 Decoding a message when Enciphering matrix is known
METHOD 1: Using Substitution Ciphers
• Group the given code into a sequence of 3× 1 or 2× 1 matrix depending on the order of the

enciphering matrix. Write all these numeric codes together in a matrix and name it as C.

• Find the inverse of the enciphering matrix A i.e A−1 =
adjA
|A|

• We know that C = AP , so compute P = A−1C.
• Finally, convert the resultant matrix codes into their respective letters. Thus the code has

been decrypted.

METHOD 2: Using Hill Cipher
1. Convert the given text into their corresponding numeric codes using Hill Cipher substitution.
2. Group the given code into a sequence of 3 × 1 or 2 × 1 matrix, depending on the order of

the enciphering matrix. Write all these numeric codes together in matrix C.

3. Find the inverse of the enciphering matrix A i.e A−1 = d−1 adj A where
1

|A|
=

1

d
= d−1

and d−1 is such that d.d−1 ≡ 1(mod 26)
4. Now compute P = A−1C
5. Finally, convert the resultant matrix codes into their respective letters. Thus the code has

been decrypted.

2.3 Deciphering a message when Enciphering matrix is not known using
Hill Ciphers

The intercepted code or cipher text can also be deciphered without knowing the enciphering
matrix. If a minimum of four letters of cipher text can be correctly matched to the plain text,
then the message can be deciphered.
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1. Suppose the code c1c2c3c4 correspond to the plain text p1p2p3p4 then C1 =

[
c1 c3
c2 c4

]
P1 =

[
p1 p3
p2 p4

]
. Convert the given text into their corresponding numeric codes using Hill

Cipher substitution.
2. Group the given code into a sequence of 3× 1 or 2× 1 matrix depending on the order of the

matrix C1. Write all these numeric codes together and name it as matrix C.
3. To find A−1, we know that P = A−1C =⇒ A−1 = P1C

−1
1 . To find C−11 follow the same

procedure as in decoding of a message when enciphering matrix is known.
4. Now compute P = A−1C where C is the matrix containing the entire cipher text or code

vectors.
5. At the end, convert the resultant matrix codes into their respective letters. Thus the code has

been decrypted.

3 Examples and Discussion
In this section we consider a few examples to check the above explained methods of encoding
and decoding.

Example 1: Encode the message “ THE BRITISH ARE COMING ” using the matrix 1 2 1
2 3 1
−2 0 1

.

Solution: Assigning each alphabet to their respective numeric code and breaking the message
into a sequence of 3× 1 column matrices as follows, we have

T
H
E

→
→
→

 20
8
5

 ∗B
R

→
→
→

 27
2
18

 I
T
I

→
→
→

 9
20
9

 S
H
∗

→
→
→

 19
8
27


A
R
E

→
→
→

 1
18
5

 ∗C
O

→
→
→

 27
3
15

 M
I
N

→
→
→

 13
9
14

 G
∗
∗

→
→
→

 7
27
27


Inorder to complete the last matrix, we add a space at the end of the message. Writing all the

numeric codes together in the matrix P we get, P =

20 27 9 19 1 27 13 7
8 2 20 8 18 3 9 27
5 18 9 27 5 15 14 27

 and

the given enciphering matrix is A =

 1 2 1
2 3 1
−2 0 1


Now compute C = AP =

 41 49 58 62 42 48 45 88
69 78 87 89 61 78 67 122
−35 −36 −9 −11 3 −39 −12 13


The columns of the above matrix transmitted in the following linear form gives the encoded
message which is

41, 69, −35, 49, 78, −36, 58, 87, −9, 62, 89, −11
42, 61, 3, 48, 78, −39, 45, 67, −12, 88, 95, 13
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Thus the code had been encrypted. When the third party receives this message they will not be
able to make the original message.

Example 2: Encipher the plain text “NOANSWER ” with the enciphering matrix
[
2 3
7 8

]
.

Solution: Converting plain text vector by Hill ciphers and breaking the message into a sequence
of 2× 1 column matrices, the message becomes

N
O
→
→

[
13
14

]
A
N
→
→

[
0
13

]
S
W
→
→

[
18
22

]
E
R
→
→

[
4
17

]

Writing all the numeric codes together in the matrix P , we get P =

[
13 0 18 4
14 13 22 17

]
and the

given enciphering matrix is A =

[
2 3
7 8

]
Now compute C = AP =

[
68 39 102 59
203 104 302 164

]
≡
[
16 13 24 7
21 0 16 8

]
(mod 26)

Convert each entry in the above matrix into their respective letters.[
16
21

]
→
→

Q
V

[
13
0

]
→
→

N
A

[
24
16

]
→
→

Y
Q

[
7
8

]
→
→

H
I

Transmitting the entries in the linear form we get “ QVNAY QHI ”.
Thus the code had been encrypted.

Example 3: Decode the message 71, 100,−1, 28, 43,−5, 84, 122,−11, 63, 98,−27, 69, 102,

− 12, 88, 126,−3 using the matrix

 1 2 1
2 3 1
−2 0 1

 .
Solution: The given enciphering matrix is a 3 × 3 matrix and hence we break the code into a

sequence of 3× 1 column matrices as C =

 71 28 84 63 69 88
100 43 122 98 102 126
−1 −5 −11 −27 −12 −3


The given enciphering matrix is A =

 1 2 1
2 3 1
−2 0 1


=⇒ A−1 =

 3 −2 −1
−4 3 1
6 −4 −1

 which is the deciphering matrix

Compute P = A−1C =

14 3 19 20 15 15
15 12 19 15 18 23
27 1 27 13 18 27


Now convert the codes in the above matrix into their respective letters and transmit in the linear
form and we get message as

14 15 27 3 12 1 19 19 27 20 15 13 15 18 18 15 23

N O * C L A S S * T O M O R R O W
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NO CLASS TOMORROW

Thus the code has been decrypted and we can observe that if A changes then the resultant ma-
trix also changes resulting in some gibberish message.

Example 4: Decipher the code “SAKNOXAOJX ” with the enciphering matrix
[
4 1
3 2

]
.

Solution: Converting the plain text vector by Hill ciphers and breaking the message into a
sequence of 2× 1 column matrices as follows, we obtain

S
A
→
→

[
19
1

]
K
N
→
→

[
11
14

]
O
X
→
→

[
15
24

]
A
O
→
→

[
1
15

]
J
X
→
→

[
10
24

]
Writing all the numeric codes together in the matrix C, we get C =

[
19 11 15 1 10
1 14 24 15 24

]
The given enciphering matrix is A =

[
4 1
3 2

]
=⇒ |A| = 5 = d

=⇒ d−1 = (5)−1 ≡ 21 (mod 26) (∵ 5× 21 ≡ 1 (mod 26))

∴ A−1 = 21

[
2 −1
−3 4

]
=

[
42 −21
−63 84

]
≡
[
16 5
15 6

]
(mod 26) , which is the deciphering

matrix.

Compute P = A−1C =

[
309 246 360 91 280
291 249 369 105 294

]
≡
[
23 12 22 13 20
5 15 5 1 9

]
(mod 26)

Convert each entry in the above matrix into their respective letters and transmit in the linear
form we get the message as

23 5 12 15 22 5 13 1 20 9

W E L O V E M A T H

WE LOVE MATH

Thus the code has been decoded.

Example 5: You intercept the message “FBRTLWUGAJQINZTHHXTEPHBNXSW ”,
which you know was encoded using a linear transformation of trigraphs in the 26− letter al-
phabet A − Z with numerical equivalents 0 − 25. You also know that last three trigraphs are
the senders signature “JAMESBOND ”. Find the deciphering matrix and read the message.

Solution: The cipher text TEPHBNXSW corresponding to the plain text JAMESBOND

The matrix C1 is made up from TEPHBNXSW

T
E
P

→
→
→

 19
4
15

 H
B
N

→
→
→

 7
1
13

 X
S
W

→
→
→

 23
18
22

 =⇒ C1 =

19 7 23
4 1 18
15 13 22


The matrix P1 is made up from JAMESBOND

J
A
M

→
→
→

 9
0
12

 E
S
B

→
→
→

 4
18
1

 O
N
D

→
→
→

 14
13
3

 =⇒ P1 =

 9 4 14
0 18 13
12 1 3
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To find A−1, compute A−1 = P1C
−1
1

Given C1 =

19 7 23
4 1 18
15 13 22

 =⇒ |C1| = −1903 ≡ 21 (mod 26) = d

=⇒ d−1 = 21−1 ≡ 5 (mod 26)

∴ C−11 = 5

22 15 25
0 21 10
11 14 17

 =

110 75 125
0 105 50
55 70 85

 ≡
6 23 21

0 1 24
3 18 7

 (mod 26)

On substituting, we get A−1 =

96 463 383
39 252 523
81 331 297

 ≡
18 21 19

13 18 3
3 19 11

 (mod 26)

Now we should find the full plain text message,

where C =

 5 19 20 9 13 7 19 7 23
1 11 6 16 25 7 4 1 18
17 22 0 8 19 23 15 13 22


i.e., P = A−1C =

434 991 486 650 1120 710 711 394 1210
128 445 332 333 526 244 340 142 581
221 508 174 419 723 407 298 83 653


≡

18 3 18 0 2 8 9 4 14
4 17 4 13 0 0 0 18 13
13 14 18 3 21 17 12 1 3

 (mod 26)

Convert each entry in the above matrix into their respective letters and transmit the entries in
the linear form, we arrive at

18 4 13 3 17 14 18 4 18 0 13 3

S E N D R O S E S A N D

2 0 21 8 0 17 9 0 12 4 18 1 14 13 3

C A V I A R J A M E S B O N D

SEND ROSES AND CAVIAR JAMES BOND

The message is now decoded. By this we can notice that knowing the entire matrix is not
needed. Even if we know a few code words we can decode the message.

4 Conclusion

In this paper, we have just given an introduction to what Cryptography is. We can observe
that the same plain text encrypts to different cipher text with different keys(matrices). If the
recipient does not know the right key, they will not be able to decode the received message
properly, which makes our message secure. Any classified information can be shared between
two individuals or groups, so that even if others get a hold of the message they will not be able
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to make out hidden meaning in it without the key.
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1 Introduction
Mathematical Modelling is a technique which essentially consists of translating real world
problems into mathematical problems, solving the mathematical problems and interpreting
these solutions in the language of the real world. In other words, mathematical modelling is
a method of simulating real life situations with mathematical equations to forecast their future
behaviour [1]. Mathematical Modelling of large-scale systems presents its own special prob-
lems. However mathematical modellers from all disciplines - mathematics, statistics, computer
science, physics, engineering, social sciences - are meeting the challenges with courage [2].

System of Linear equations arise in a wide variety of applications. A system of equations
is a set of collection of equations that we deal with all together at once. In this article we will
look at two application, The first application shows how to fit a polynomial function to a set
of data points in the plane. The second application focuses on network and Kirchoff’s law of
electricity.

1.1 Gauss-Jordan Elimination Method
Carl Friedrich Gauss (1777 - 1855) was a German mathematician, generally regarded as one
of the greatest mathematicians of all time for his contributions to number theory, geometry,
probability theory, geodesy, planetary astronomy, the theory of functions, and potential theory.
Wilhelm Jordan (1842 - 1899) was a German geodesist who conducted surveys in Germany
and Africa and founded the German geodesy journal.
1. The process of Gauss-Jordan elimination involves creating an augmented matrix for given

system of linear equations.
2. Derive the reduced row echelon form using row operations. This is done by creating leading

1s, then zeros above and below each leading 1, column by column starting with the first
column.

3. Write the system of equations corresponding to the reduced echelon form. This system gives
the solution. [3]
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2 Curve Fitting

Curve fitting is the process of constructing a curve, or mathematical function, that has the best
fit to a series of data points. Most of the time the curve fit will produce an equation that can
be used to find points any where along the curve. In some cases, we may not be concerned
about finding an equation. Instead, we may just want to use a curve fit to smooth the data and
improve the appearance of our plot [3].

2.1 Applications of curve fitting
1. In Indian structures the curve fitting is used in NEO-GOTHIC architectural buildings such

as University of Mumbai Library and Santhome Basilica, Chennai.
2. Analysis of the shape of the cooling tower at SIPAT thermal power plant in Bilaspur district

in state of Chhattisgarh.

3 Traffic flow

Mathematical theory of traffic flow and traffic equilibrium analysis was first introduced by
Frank Knit in 1920′s, and was refined into Wardrop’s first and second principles of equilibrium.
Current traffic models use a mixture of empirical and theoretical techniques. These models are
then developed into traffic forecast, to take account of proposed local or major changes, such
as increased vehicle use, changes in land use or changes in mode of transport and to identify
areas of congestion where the network needs to be adjusted [4].

3.1 Applications of traffic flow problems
Traffic flow plays an important role in electrical engineering. The concept have been found to
be useful in many other fields. Such as information theory and study of transportation systems.
The following analysis of traffic flow through a road network during peak period illustrates how
system of linear equations with many solutions can arise in practice.

Traffic congestion has a number of negative effects on humanity. These include wasting
time of motorists and passengers which therefore reduce regional economic health; delays,
which may result in late arrival for employment, meetings and education, resulting in loss of
businesses, disciplinary action or other personal losses. Blocked traffic may interfere with the
passage of emergency vehicles traveling to their destinations where they are urgently needed;
wasted fuel, increasing air pollution and carbon dioxide emissions owing to increasing idling,
acceleration and breaking of vehicles; wear and tear on vehicles as a result of idling in traffic
and frequent accelerating and breaking, leading to more frequent repairs and replacement of car
parts; stressed and frustrated motorists, encouraging road rage and reduced health of motorists
[1].

4 Electrical Network

1. Kirchhoff’s First Law (Junction rule) : At every node the sum of the incoming currents
equals to sum of the outgoing currents.
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2. Kirchhoff’s Second Law (loop rule) : Around every loop the algebraic sum of all voltages
is zero.

3. Ohm’s law : For every resistor the voltage drop E, the current I and the resistanceR satisfy
E = IR. [1][3]

5 Examples and Discussions

Example 1: Find a polynomial that relates the periods of the three planets that are closest to
the Sun to their mean distances from the Sun, as shown in the table. Then test the accuracy of
the fit by using the polynomial to calculate the period of Mars. (In the table, the mean distance
is given in astronomical units, and the period is given in years.)

Planet Mercury Venus Earth Mars
Mean distance 0.387 0.723 1.000 1.524

Period 0.241 0.615 1.000 1.881

Solution: Let us consider a quadratic polynomial function, P (x) = a0 + a1x + a2x
2 to the

points, (0.387,0.241), (0.723,0.615) and (1,1).
The system of linear equations obtained by substituting these points into above quadratic poly-
nomial function is,

a0 + 0.387a1 + (0.387)2a2 = 0.241
a0 + 0.723a1 + (0.723)2a2 = 0.615

a0 + a1 + a2 = 1

By solving above system of equations, we get

a0 ≈ −0.0634, a1 ≈ 0.6119, a2 ≈ 0.4515.
∴ P (x) = −0.0634 + 0.6119x+ 0.4515x2

Using P (x) we can evaluate the period of Mars. i.e. P (1.524) ≈ 1.918 years.
Here the actual period of Mars is 1.881 years. Figure 1 compares the estimate with the actual
period graphically.

Figure 1: Graph of Mean distance vs. Period
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Example 2: Determine the polynomial P (x) = a0 + a1x + a2x
2 whose graph passes through

the points (1,4), (2,4) and (3,12).
Solution: Given P (x) = a0 + a1x+ a2x

2

at (1, 4) p(x) becomes P (1) = a0 + a1(1) + a2(1)2

a0 + a1 + a2 = 4 (1)

at (2, 4) p(x) becomes P (2) = a0 + a1(2) + a2(2)2

a0 + 2a1 + 4a2 = 0 (2)

at (3, 12) p(x) becomes P (3) = a0 + a1(3) + a2(3)2

a0 + 3a1 + 9a2 = 12 (3)

By solving above three equations we get

a0 = 24, a1 = −28, a2 = 8

And we draw the points in the Figure 2 we get the polynomial equation as below, So the
polynomial function is, P (x) = 24− 28x+ 8x2.

Figure 2: Graph of a polynomial P (x)

Example 3: Determine the equation of the polynomial of degree two whose graph passes
through the points (1,6), (2,3), (3,2).
Solution: Let us consider a polynomial of degree two,

y = a0 + a1x+ a2x
2 (4)

We have 3 points (1,6), (2,3) and (3,2) and substitute x and y values in the above polynomial
gives,

a0 + a1 + a2 = 6
a0 + 2a1 + 4a2 = 3
a0 + 3a1 + 9a2 = 2

(5)

We can solve above system of equations using Gauss-jordan elimination method. The aug-
mented matrix for above is, 1 1 1 : 6

1 2 4 : 3
1 3 9 : 2
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≈ R2 → R2 −R1

R3 → R3 −R1

1 1 1 : 6
0 1 3 : −3
0 2 8 : −4



≈ R1 → R1 −R2

R3 → R3 −R2

1 0 −2 : 9
0 1 3 : −3
0 0 2 : 2



≈ R3 →
R3

2

1 0 −2 : 9
0 1 3 : −3
0 0 1 : 1



≈ R1 → R1 + 2R3

R2 → R2 − 3R3

1 0 0 : 11
0 1 0 : −6
0 0 1 : 1


From the above diagonal matrix we get, a0 = 11, a1 = −6, a2 = 1.
The parabola that passes through these points is y = 11− 6x+ x2 , as shown in the Figure 3.

Figure 3: Graph of a polynomial y = 11− 6x+ x2

Example 4: Let us consider the typical road network, A system of linear equations were used
to analyze the flow of traffic for a network of 4 one-way streets. The variables x, y, z and
w represent the flow of the traffic between the four intersections in the network. The data
was obtained by counting the number of vehicles that traveled around the four one-way streets
between the hours of 6am to 10am and 2pm to 6pm during the mid-week peak traffic hours.
The arrows in the Figure 4 indicate the direction of flow of traffic in and out of the network
that is measured in terms of number of vehicles per hour (vph). (Figure 4 describes the four
one-way streets in Kumasi under study in the model)

Figure 4: Diagram of the four one-way streets
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Solution: Let us assume that, vehicles entering each intersection should always be equal to the
number of vehicles leaving the intersection and, the streets must all be one-way with the arrows
indicating the direction of traffic flow. The system of equations for the model was formulated
as follows:
At intersection A:

Traffic in = x+ y
Traffic out = 240 + 190
Thus, x+ y = 431

At intersection B:

Traffic in = 150 + 105
Traffic out = x+ w
Thus, x+ w = 255

At intersection C:

Traffic in = z + w
Traffic out = 230 + 110
Thus, z + w = 340

At intersection D:

Traffic in = 280 + 236
Traffic out = y + z
Thus, y + z = 516

The constraints were written as a system of linear equations as follows:

x+ y = 431
x+ w = 255
z + w = 340
y + z = 516

(6)

We then used the Gauss-Jordan elimination method to solve the system of equations. The
augmented matrix and reduced row-echelon form of equation (1) is as follows,

1 1 0 0 : 431
1 0 0 1 : 255
0 0 1 1 : 340
0 1 1 0 : 516

 (−−−−−−−−−−→Row operations
) 

1 0 0 1 : 255
0 1 0 −1 : 176
0 0 1 1 : 340
0 0 0 0 : 0


The system of equations that corresponds to reduced row-echelon form is,

x+ w = 255
y − w = 176
z + w = 340

(7)

Hence we have,
x = 255− w
y = 176 + w
z = 340− w

(8)

If we take a construction limit on Labour-Asafo Interchange Rd (w) to be 100 vph, then using
above equation the values of x, y, z will be,
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x = 255− 100, y = 176 + 100, z = 340− 100

∴ x = 155 vph, y = 276 vph, z = 240 vph.

Example 5: Determine the amount of traffic between each of the four intersections in Figure
5.

Figure 5: Traffic flow between four junctions

Solution: At each intersection, the incoming traffic has to match the outgoing traffic.
Intersection A : x4 + 610 = x1 + 450
Intersection B : x1 + 400 = x2 + 640
Intersection C : x2 + 600 = x3
Intersection D : x3 = x4 + 520

∴ x1 − x4 = 160
x1 − x2 = 240
x2 − x3 = −600
x3 − x4 = 520

(9)

The augmented matrix and reduced row-echelon form using Gauss-Jordan elimination method
of equation (9) as follows,

1 0 0 −1 : 160
1 −1 0 0 : 240
0 1 −1 0 : −600
0 0 1 −1 : 520

(−−−−−−−−−−→Row operations
)

1 0 0 −1 : 160
0 1 0 −1 : −80
0 0 1 −1 : 680
0 0 0 0 : 0


The system of equations that corresponds to this reduced row-echelon form is,

x1 − x4 = 160
x2 − x4 = −80
x3 − x4 = 680

(10)

Let x4 = t in equation (10) then, x1 = t+ 160, x2 = t− 160, x3 = t+ 680
Where t is a real number, so this system has a infinitely many solutions. If we could control the
amount of flow along x4.
For instance, letting t = 100. then,

x1 = 260, x2 = 20, x3 = 780, x4 = 100

Example 6: Determine the currents I1, I2, I3, I4, I5 and I6 for the electrical network shown in
the Figure 6.
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Figure 6: Electrical network

Solution: Applying Kirchhoff’s first law to the four junctions in Figure 6, then
Junction 1: I1 + I3 = I2
Junction 2: I1 + I4 = I2
Junction 3: I3 + I6 = I5
Junction 4: I4 + I6 = I5
Applying Kirchhoff’s second law to the three paths produces in Figure 6, then
Path 1: 2I1 + 4I2 = 10
Path 2: 4I2 + I3 + 2I4 + 2I5 = 17
Path 3: 2I5 + 4I6 = 14
Now we have the following system of linear equations with variables I1, I2, I3, I4, I5 and I6.

I1 − I2 + I3 = 0
I1 − I2 + I4 = 0
I3 − I5 + I6 = 0
I4 − I5 + I6 = 0
2I1 + 4I2 = 10
4I2 + I3 + 2I4 + 2I5 = 17
2I5 + 4I6 = 14

(11)

The augmented matrix for equation (11) is,



1 −1 1 0 0 0 : 0
1 −1 0 1 0 0 : 0
0 0 1 0 −1 1 : 0
0 0 0 1 −1 1 : 0
2 4 0 0 0 0 : 10
0 4 1 2 2 0 : 17
0 0 0 0 2 4 : 14


(12)

Using Gauss-Jordan elimination method we have the solution,i.e.

I1 = 1 amp, I2 = 2 amp, I3 = 1 amp, I4 = 1 amp, I5 = 3 amp, I6 = 2 amp

Example 7: Determine the currents through each branch of the electrical network shown in the
Figure 7.

86



Figure 7: Electrical network

Solution: Let currents in the various branches of the circuit (Figure 7) be I1, I2 and I3.
Kirchhoff’s law refers to junctions & closed paths. There are 2 junctions in this circuit, namely
the points B & D and there are three closed paths, namely ABDA, CBDC, and ABCDA.
Apply Kirchhoff’s laws to the junctions & paths.
At junctions,

Junction B : I1 + I2=I3
Junction D : I3=I1 + I2

The equations result in a single linear equation, I1 + I2 − I3 = 0
At paths,

path ABDA : 2I1 + I3 + 2I1 = 8
path CBDC : 4I2 + I3 = 16

∴ We have
I1 + I2 − I3 = 0
4I1 + I3 = 8
4I2 + I3 = 16

(13)

The augmented matrix and reduced row-echelon form of equation (13) using Gauss-Jordan
elimination method as follows, 1 1 −1 : 0

4 0 1 : 8
0 4 1 : 16

(−−−−−−−−−−→Row operations
) 1 0 0 : 1

0 1 0 : 3
0 0 1 : 4


From matrix of reduced row-echelon form, we have

I1 = 1 amps
I2 = 3 amps
I3 = 4 amps

6 Conclusion
In this article we consider the linear system in real life problems like Curve Fitting, Traffic Flow
and Electrical Network. Linear systems are the collection of linear equations. Hence here we
use the Mathematical Modelling Technique to solve the linear system of equations with Gauss
Jordan Elimination Method with this we get exact solutions.
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Abstract: Integro-differential equations arise in the mathematical modelling of many phys-
ical phenomena. In this paper, we use Haar wavelet method for the numerical solution of
Fredholm integro-differential equation, Volterra integro-differential equation, system of Fred-
holm integro-differential equations and system of Volterra integro-differential equations. The
basic idea of Haar wavelet collocation method is to convert the integro-differential equation
into a system of algebraic equations that involves a finite number of variables. The numerical
results are compared with the exact solution to prove the accuracy of the Haar wavelet method.

Keywords: Fredholm integro-differential equation,, Volterra integro-differential equation,
Haar wavelets, Collocation points.

1 Introduction

An integro-differential equation is an equation that involves both integrals and derivatives of a
function. In other words, an integro-differential equation is a combination of differential and
Fredholm-Volterra integral equations. Integro-differential equations play an important role in
many branches of linear and nonlinear functional analysis and their applications in the theory of
engineering, mechanics, physics, chemistry, astronomy, biology, economics, potential theory
and electrostatics. The mentioned integro-differential equations are usually difficult to solve
analytically, so a numerical method is required.

In the recent years, wavelets have been widely used to solve differential equations. Alfred
Haar, a Hungarian mathematician introduced Haar wavelets in 1910. The Haar wavelets con-
sist of piecewise constant functions and are therefore the simplest orthonormal wavelets with
a compact support. An advantage of these wavelets is the possibility to integrate them analyt-
ically arbitrary times. They are the simplest possible wavelets and are often known as a first
order Daubechies wavelet which are conceptually simple, fast, memory efficient and exactly
reversible [1]. Sumana and Achala [2] have given a brief report on Haar wavelets. Chen and
Hsiao [3] recommended to expand into the Haar series the highest order derivatives appearing
in the differential equation. This idea has been very prolific and it is being abundantly applied
for the solution of differential equations. The wavelet coefficients appearing in the Haar series
are calculated either using Collocation method or Galerkin method.

Cattani [4] applied the Shannon wavelets for solving integro-differential equations. Sayed
and Aziz [5] compared Adomian decomposition method and wavelet-Galerkin method for solv-
ing integro-differential equations. Lepik [6] solved nonlinear integro-differential equations us-
ing Haar wavelet method. Maleknejad et. al. [7] solved linear integro-differential equations
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system by using rationalized Haar functions method. Mishra et. al. [8] presented numeri-
cal solution of integro-differential equations using Haar wavelet algorithm. Siraj-ul-Islam et.
al. [9, 10] used Haar wavelets to solve linear integro-differential equations and higher or-
der nonlinear integro-differential equations. Sekar and Jaisankar [11] used single-term Haar
wavelet series to solve nonlinear integro-differential equations. Aminikhah and Hossein [12]
used Chebyshev wavelets to solve nonlinear system of integro-differential equations. Kajania
and Vencheh [13] solved linear integro-differential equations, and Meng et. al. [14] solved
fractional integro-differential equations using Legendre wavelets.

2 Preliminaries of Haar wavelets

The Haar wavelet family for x ∈ [0, 1] is defined as follows [1]

hi(x) =


1 for x ∈ [ξ1, ξ2)

−1 for x ∈ [ξ2, ξ3)

0 elsewhere

(1)

where
ξ1 =

k

m
, ξ2 =

k + 0.5

m
, ξ3 =

k + 1

m
(2)

In order to solve integral or differential equations of any order, we need the following integral.

pi(x) =

∫ x

0

hi(x)dx =


x− ξ1 for x ∈ [ξ1, ξ2)

ξ3 − x for x ∈ [ξ2, ξ3)

0 elsewhere

(3)

In the above definition m = 2n, n = 0, 1, ..., J indicates the level of the wavelet; k =
0, 1, ...,m − 1 is the translation parameter. J is the maximum level of resolution. The in-
dex i in equation (1) is calculated by the formula i = m+k+1. In the case of minimum values
m = 1, k = 0 we have i = 2. The maximum value of i is i = 2M = 2J+1.

For i = 1 , h1(x) is assumed to be the scaling function which is defined as follows.

h1(x) =

1 for x ∈ [0, 1)

0 elsewhere
(4)

3 Method of Solution and Examples

3.1 Fredholm integro-differential equation
Example 1:

y′(x) + 2xy(x) = 2x4 + 2x3 + 3x2 − 17

12
+

∫ 1

0

(x+ t)y′(t)dt (5)
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with initial condition
y(0) = 0 (6)

The exact solution is
y(x) = x2(1 + x) (7)

Let the Haar wavelet solution be in the form

y′(x) =
2M∑
i=1

aihi(x) (8)

Integrating equation (8) w.r.t. x from 0 to x and using equation (6) gives

y(x) =
2M∑
i=1

aipi(x) (9)

Substituting equations (8) and (9) in equation (5) leads to

2M∑
i=1

ai[hi(x) + 2xpi(x)−Gi(x)] = 2x4 + 2x3 + 3x2 − 17

12
(10)

where

Gi(x) =

∫ 1

0

(x+ t)hi(t)dt (11)

Solving Gi(x), we obtain

Gi(x) =


x+

1

2
, if i = 1

− 1

4m2
, if i > 1

(12)

The wavelet collocation points are defined as

xl =
l − 0.5

2M
, l = 1, 2, . . . , 2M. (13)

Taking x→ xl in equations (10) and (9), we get

2M∑
i=1

ai[hi(xl) + 2xlpi(xl)−Gi(xl)] = 2x4l + 2x3l + 3x2l −
17

12
(14)

y(xl) =
2M∑
i=1

aipi(xl) (15)

The wavelet coefficients ai, i = 1, 2, . . . , 2M are obtained by solving the 2M system of equa-
tions in (14). These coefficients are then substituted in equation (15) to obtain the Haar wavelet
solution at the collocation points xl, l = 1, 2, . . . , 2M . The HWCM solution of the example
with J = 6 is given in Table 1. Figure 1 shows the comparison of the HWCM solution with the
exact solution.
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3.2 Volterra integro-differential equation
Example 2:

y′(x) + y(x) =

∫ x

0

et−xy(t)dt (16)

with initial condition
y(0) = 1 (17)

The exact solution is
y(x) = e−x cosh(x) (18)

Let the Haar wavelet solution be in the form

y′(x) =
2M∑
i=1

aihi(x) (19)

Integrating equation (19) w.r.t. x from 0 to x and using equation (17), we get

y(x) = 1 +
2M∑
i=1

aipi(x) (20)

Substituting equations (19) and (20) in equation (16), we obtain

2M∑
i=1

ai[hi(x)− pi(x)−Gi(x)] = −e−x (21)

where
Gi(x) =

∫ x

0

et−xpi(t)dt (22)

Solving Gi(x) for i = 1 leads to

Gi(x) = x− 1 + e−x (23)

Solving Gi(x) for i > 1 gives

Gi(x) =



0 if x ∈ [0, ξ1)

eξ1−x + x− ξ1 − 1, if x ∈ [ξ1, ξ2)

eξ1−x − 2eξ2−x − x+ ξ3 + 1, if x ∈ [ξ2, ξ3)

eξ1−x + eξ3−x − 2eξ2−x, if x ∈ [ξ3, 1]

(24)

The wavelet collocation points are defined as

xl =
l − 0.5

2M
, l = 1, 2, . . . , 2M. (25)

Taking x→ xl in equations (21) and (20),we obtain

2M∑
i=1

ai[hi(xl)− pi(xl)−Gi(xl)] = −e−xl (26)
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y(xl) = 1 +
2M∑
i=1

aipi(xl) (27)

The wavelet coefficients ai, i = 1, 2, . . . , 2M are obtained by solving the 2M system of equa-
tions in (26). These coefficients are then substituted in equation (27) to obtain the Haar wavelet
solution at the collocation points xl, l = 1, 2, . . . , 2M . The HWCM solution of the example
with J = 3 is given in Table 2. Figure 2 shows the comparison of the HWCM solution with the
exact solution.

3.3 System of Fredholm integro-differential equations
Example 3:

2πu(x) = 2π cos(2πx)[1 + sin(2πx)] +

∫ 1

0

[cos(2πt) sin(4πx)u′(t)− sin(4πx+ 2πt)v′(t)]dt

(28)

v′(x) = cos(2πx)[2π− sin(2πx)]−
∫ 1

0

[cos(4πx) sin(2πt)u(t) + cos(4πx+ 2πt)v(t)]dt (29)

with initial condition
u(0) = 1, v(0) = 0 (30)

The exact solutions are
u(x) = cos(2πx) (31)

v(x) = sin(2πx) (32)

Let the Haar wavelet solutions be in the form

u′(x) =
2M∑
i=1

aihi(x) (33)

v′(x) =
2M∑
i=1

bihi(x) (34)

Integrating equations (33) and (34) w.r.t. x from 0 to x, and using equation (30) gives

u(x) = 1 +
2M∑
i=1

aipi(x) (35)

v(x) =
2M∑
i=1

bipi(x) (36)

Substituting equations (33), (34), (35) and (36) in equations (28) and (29) leads to

2M∑
i=1

{ai[2πpi(x)− sin(4πx)G1i(x)] + bi[H1i(x)]} = −2π + 2π cos(2πx)(1 + sin(2πx)) (37)

2M∑
i=1

{ai[cos(4πx)G2i(x)] + bi[hi(x) +H2i(x)]} = cos(2πx)(2π − sin(2πx)) (38)
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where

G1i(x) =

∫ 1

0

cos(2πt)hi(t)dt (39)

G2i(x) =

∫ 1

0

sin(2πt)pi(t)dt (40)

H1i(x) =

∫ 1

0

sin(4πx+ 2πt)hi(t)dt (41)

H2i(x) =

∫ 1

0

cos(4πx+ 2πt)pi(t)dt (42)

Solving G1i(x), G2i(x), H1i(x) and H2i(x) we obtain

G1i(x) =

0 if i = 1
1

2π
[2 sin(2πξ2)− sin(2πξ1)− sin(2πξ3)], if i > 1

(43)

G2i(x) =


− 1

2π
, if i = 1

1

4π2
[2 sin(2πξ2)− sin(2πξ1)− sin(2πξ3)], if i > 1

(44)

H1i(x) =

0, if i = 1
1

2π
[−2 cos(4πx+ 2πξ2) + cos(4πx+ 2πξ1) + cos(4πx+ 2πξ3)], if i > 1

(45)

H2i(x) =


sin(4πx)

2π
, if i = 1

1

4π2
[2 cos(4πx+ 2πξ2)− cos(4πx+ 2πξ1)− cos(4πx+ 2πξ3)], if i > 1

(46)
The wavelet collocation points are defined as

xl =
l − 0.5

2M
, l = 1, 2, . . . , 2M. (47)

Taking x→ xl in equations (37), (38), (39) and (36), we get
2M∑
i=1

[
2πpi(xl)− sin(4πxl)G1i(xl) H1i(xl)

cos(4πxl)G2i(xl) hi(xl) +H2i(xl)

] [
ai
bi

]
=[

−2π + 2π cos(2πxl)(1 + sin(2πxl))
cos(2πxl)(2π − sin(2πxl))

] (48)

u(xl) = 1 +
2M∑
i=1

aipi(xl) (49)

v(xl) =
2M∑
i=1

bipi(xl) (50)

The wavelet coefficients ai, bi, i = 1, 2, . . . , 2M are obtained by solving the 4M system of
equations in (48). These coefficients are then substituted in equations (49) and (50) to obtain
the Haar wavelet solution at the collocation points xl, l = 1, 2, . . . , 2M . The HWCM solution
of the example with J = 5 is given in Table 3. Figure 3 shows the comparison of the HWCM
solution with the exact solution.
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3.4 System of Volterra integro differential equation

Example 4:

u′(x) = 1 + x+ x2 − v(x)−
∫ x

0

[u(t) + v(t)]dt (51)

v′(x) = −1− x+ u(x)−
∫ x

0

[u(t)− v(t)]dt (52)

with initial condition
u(0) = 1, v(0) = −1 (53)

The exact solutions are
u(x) = x+ ex (54)

v(x) = x− ex (55)

Let the Haar wavelet solutions be in the form

u′(x) =
2M∑
i=1

aihi(x) (56)

v′(x) =
2M∑
i=1

bihi(x) (57)

Integrating equations (56) and (57) w.r.t. x from 0 to x, and using equation (53), we obtain

u(x) = 1 +
2M∑
i=1

aipi(x) (58)

v(x) = −1 +
2M∑
i=1

bipi(x) (59)

Substituting equations (56), (57), (58) and (59) in equations (51) and (52), we get

2M∑
i=1

ai[hi(x) +Gi(x)] +
2M∑
i=1

bi[pi(x) +Gi(x)] = 2 + x+ x2 (60)

2M∑
i=1

ai[hi(x)−Gi(x)] +
2M∑
i=1

bi[Gi(x)− pi(x)] = −3x (61)

where

Gi(x) =

∫ x

0

pi(t)dt (62)

Solving Gi(x) for i = 1 gives

Gi(x) =
x2

2
(63)
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Solving Gi(x) for i > 1 leads to

Gi(x) =



0, if x ∈ [0, ξ1)

(x− ξ1)2

2
, if x ∈ [ξ1, ξ2)

(ξ2 − ξ1)2 −
(ξ3 − x)2

2
, if x ∈ [ξ2, ξ3)

(ξ2 − ξ1)2, if x ∈ [ξ2, 1]

(64)

The wavelet collocation points are defined as

xl =
l − 0.5

2M
, l = 1, 2, . . . , 2M. (65)

Taking x→ xl in equations (60), (61), (58) and (59), we get

2M∑
i=1

[
hi(xl) +Gi(xl) pi(xl) +Gi(xl)
hi(xl)−Gi(xl) Gi(xl)− pi(xl)

] [
ai
bi

]
=

[
2 + xl + x2l
−3xl

]
(66)

u(xl) = 1 +
2M∑
i=1

aipi(xl) (67)

v(xl) = −1 +
2M∑
i=1

bipi(xl) (68)

The wavelet coefficients ai, bi, i = 1, 2, . . . , 2M are obtained by solving the 4M system of
equations in (66). These coefficients are then substituted in equations (67) and (68) to obtain
the Haar wavelet solution at the collocation points xl, l = 1, 2, . . . , 2M . The HWCM solution
of the example with J = 4 is given in Table 4. Figure 4 shows the comparison of the HWCM
solution with the exact solution.

Table 1: Comparison of HWCM solution and exact solution for J = 6 at different x of
Example 1

x y(x)
HWCM Exact

0.003906 0.000030 0.000015
0.035156 0.001292 0.001279
0.074219 0.005927 0.005917
0.152344 0.026749 0.026744
0.207031 0.051736 0.051735
0.402344 0.226995 0.227012
0.605469 0.588516 0.588552
0.855469 1.357825 1.357881
0.957031 1.792399 1.792462
0.996094 1.980465 1.980529
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Table 2: Comparison of HWCM solution and exact solution for J = 3 at different x of
Example 2

x y(x)
HWCM Exact

0.031250 0.970615 0.969706
0.156250 0.866488 0.865807
0.281250 0.785405 0.784891
0.406250 0.722264 0.721873
0.531250 0.673096 0.672795
0.656250 0.634809 0.634573
0.781250 0.604994 0.604805
0.843750 0.592661 0.592490
0.906250 0.581778 0.581622
0.968750 0.572174 0.572031

Table 3: Comparison of HWCM solution and exact solution for J = 5 at different x of
Example 3

x u(x) v(x)
HWCM Exact HWCM Exact

0.007813 0.998815 0.998795 0.049028 0.049068
0.101563 0.803400 0.803208 0.595209 0.595699
0.210938 0.243075 0.242980 0.969222 0.970031
0.304688 -0.337017 -0.336890 0.940759 0.941544
0.507813 -0.998776 -0.998795 -0.049028 -0.049068
0.710938 -0.242886 -0.242980 -0.969282 -0.970031
0.804688 0.336762 0.336890 -0.940816 -0941544
0.914063 0.857552 0.857729 -0.573698 -0.514103
0.976563 0.989118 0.989177 -0.146613 -0.146730
0.992188 0.998776 0.998795 -0.049028 -0.049028
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Table 4: Comparison of HWCM solution and exact solution for J = 4 at different x of
Example 4

x u(x) v(x)
HWCM Exact HWCM Exact

0.015625 1.031498 1.031373 -1.000244 -1.000123
0.203125 1.291769 1.291618 -1.010485 -1.010368
0.359375 1.868733 1.868529 -1.087390 -1.087279
0.515625 2.190540 2.190310 -1.159170 -1.159060
0.609375 2.538549 2.538292 -1.257153 -1.257042
0.713125 2.916248 2.915963 -1.384827 -1.384713
0.828125 3.327590 3.327277 -1.546148 -1.546027
0.890625 3.436195 3.435875 -1.592247 -1.592125
0.953125 3.547255 3.546928 -1.640803 -1.640678
0.984375 3.660848 3.660514 -1.691891 -1.691764

Figure 1: Comparison of HWCM solution and exact solution of Example 1

Figure 2: Comparison of HWCM solution and exact solution of Example 2
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Figure 3: Comparison of HWCM solution and exact solution of Example 3

Figure 4: Comparison of HWCM solution and exact solution of Example 4

4 Conclusion
In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve
Fredholm integro-differential equation, Volterra integro-differential equation, system of Fred-
holm integro-differential equations and system of Volterra integro-differential equations. The
numerical scheme is tested for four examples. The obtained numerical results are compared
with the exact solutions, and are found to be in good agreement. Thus the Haar wavelet method
guarantees the necessary accuracy with a small number of grid points.
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Abstract: Volterra integral equations arise in the mathematical modelling of many physical
phenomena. In this paper, we use Haar wavelet method for the numerical solution of Volterra
and system of Volterra integral equations. The basic idea of Haar wavelet collocation method
is to convert the integral equation into a system of algebraic equations that involves a finite
number of variables. The numerical results are compared with the exact solution to prove the
accuracy of the Haar wavelet method.

Keywords: Volterra integral equation, System of Volterra integral equations, Haar wavelets,
Collocation points.

1 Introduction

An integral equation is an equation in which an unknown function appears under an integral
sign. The types of integral equations are Fredholm Integral Equation and Volterra Integral
Equation. Volterra integral equations have applications in mathematical physics, chemistry,
electrochemistry, semi-conductors, scattering theory, seismology, heat conduction, metallurgy,
fluid flow, chemical reaction, population dynamics etc.

In the recent years, wavelets have been widely used to solve differential equations. Alfred
Haar, a Hungarian mathematician introduced Haar wavelets in 1910. The Haar wavelets con-
sist of piecewise constant functions and are therefore the simplest orthonormal wavelets with
a compact support. An advantage of these wavelets is the possibility to integrate them analyt-
ically arbitrary times. They are the simplest possible wavelets and are often known as a first
order Daubechies wavelet which are conceptually simple, fast, memory efficient and exactly
reversible [1]. Sumana and Achala [2] have given a brief report on Haar wavelets.

Lepik [3] applied Haar wavelets to solve nonlinear Fredholm integral equations. Linear
Volterra integral equations were solved using Haar wavelets by Rabbani [4]. Reihani [5]
used rationalized Haar function method for solving Fredholm and Volterra integral equations.
Mirzaee [6] gave the numerical computational solution of system of linear Volterra integral
equations using Haar wavelets. Shahsavaran [7] used Haar wavelet collocation method to solve
Volterra integral equations with weakly singular kernel. Babolian and Shahsavaran [8] solved
nonlinear Fredholm integral equations of the second kind using Haar wavelets. Derili et. al. [9]
applied two-dimensional Haar wavelets to solve two-dimensional Fredholm integral equations.
Biazar and Ebrahimi [10], and Yousefi and Razzaghi [11] solved nonlinear integral equations
using Chebyshev wavelets and Legendre wavelets respectively.
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2 Preliminaries of Haar wavelets

The Haar wavelet family for x ∈ [0, 1] is defined as follows [1]

hi(x) =


1 for x ∈ [ξ1, ξ2)

−1 for x ∈ [ξ2, ξ3)

0 elsewhere

(1)

where
ξ1 =

k

m
, ξ2 =

k + 0.5

m
, ξ3 =

k + 1

m
(2)

In the above definition m = 2n, n = 0, 1, ..., J indicates the level of the wavelet; k =
0, 1, ...,m − 1 is the translation parameter. J is the maximum level of resolution. The in-
dex i in equation (1) is calculated by the formula i = m+k+1. In the case of minimum values
m = 1, k = 0 we have i = 2. The maximum value of i is i = 2M = 2J+1.

For i = 1 , h1(x) is assumed to be the scaling function which is defined as follows.

h1(x) =

1 for x ∈ [0, 1)

0 elsewhere
(3)

3 Method of Solution and Examples

3.1 Volterra integral equation
Example 1:

y(x) = 1 + x2 +

∫ x

0

(
1 + x2

1 + t2

)
y(t)dt (4)

The exact solution is
y(x) = ex(1 + x2) (5)

Let the Haar wavelet solution be in the form

y(x) =
2M∑
i=1

aihi(x) (6)

Substituting equation (6) in equation (4), we obtain

2M∑
i=1

ai{hi(x)−Gi(x)} = 1 + x2 (7)

where Gi(x) is given by

Gi(x) =

∫ x

0

1 + x2

1 + t2
hi(t)dt (8)

Solving Gi(x) for i = 1 leads to

Gi(x) = (1 + x2) tan−1(x) (9)
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Solving Gi(x) for i > 1 gives

Gi(x) =



0, for x ∈ [0, ξ1)

(1 + x2)(tan−1(x)− tan−1(ξ1)), for x ∈ [ξ2, ξ3)

(1 + x2)(2 tan−1(ξ2)− tan−1(ξ1)− tan−1(x)), for x ∈ [ξ2, ξ3)

(1 + x2)(2 tan−1(ξ2)− tan−1(ξ1)− tan−1(ξ3)), for x ∈ [ξ3, 1)

(10)

The wavelet collocation points are defined as

xl =
l − 0.5

2M
, l = 1, 2, . . . , 2M. (11)

Taking the collocation points x→ xl in equations (7) and (6), we get

2M∑
i=1

ai{hi(xl)−Gi(xl)} = 1 + x2l (12)

y(xl) =
2M∑
i=1

aihi(xl) (13)

The wavelet coefficients ai, i = 1, 2, . . . , 2M are obtained by solving the 2M system of equa-
tions in (12). These coefficients are then substituted in equation (13) to obtain the Haar wavelet
solution at the collocation points xl, l = 1, 2, . . . , 2M . The HWCM solution of the example
with J = 8 is given in Table 1. Figure 1 shows the comparison of the HWCM solution with the
exact solution.

3.2 System of Volterra integral equation
Example 2:

u(x) =
1

18
x+

17

36
+

∫ 1

0

(
x+ t

3

)
(u(t) + v(t))dt (14)

v(x) = x2 − 19

12
x+ 1 +

∫ 1

0

xt(u(t) + v(t))dt (15)

The exact solutions are
u(x) = x+ 1 (16)

v(x) = x2 + 1 (17)

Let the Haar wavelet solutions be in the form

u(x) =
2M∑
i=1

aihi(x) (18)

v(x) =
2M∑
i=1

bihi(x) (19)
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Substituting equations (18) and (19) in equations (14) and (15) gives

2M∑
i=1

{ai[hi(x)−Gi(x)]− biGi(x)} =
1

18
x+

17

36
(20)

2M∑
i=1

{bi[hi(x)−Hi(x)]− aiHi(x)} = x2 − 19

12
x+ 1 (21)

where

Gi(x) =

∫ 1

0

(
x+ t

3

)
hi(t)dt (22)

Hi(x) =

∫ 1

0

xthi(t)dt (23)

Solving Gi(x) and Hi(x), we get

Gi(x) =


1

3

(
x+

1

2

)
, for i = 1

1

6
(2ξ22 − ξ21 − ξ23) , for i > 1

(24)

Hi(x) =


x

2
, for i = 1

x

2
(2ξ22 − ξ21 − ξ23) , for i > 1

(25)

The wavelet collocation points are defined as

xl =
l − 0.5

2M
, l = 1, 2, . . . , 2M. (26)

Taking the collocation points x→ xl in equations (20), (21), (18) and (19), we obtain

2M∑
i=1

[
hi(xl)−Gi(xl) −Gi(xl)
−Hi(xl) hi(xl)−Hi(xl)

] [
ai
bi

]
=

[
1
18
xl + 17

36

x2l − 19
12
xl + 1

]
(27)

u(xl) =
2M∑
i=1

aihi(xl) (28)

v(xl) =
2M∑
i=1

bihi(xl) (29)

The wavelet coefficients ai, bi, i = 1, 2, . . . , 2M are obtained by solving the 4M system of
equations in (27). These coefficients are then substituted in equations (28) and (29) to obtain
the Haar wavelet solution at the collocation points xl, l = 1, 2, . . . , 2M . The HWCM solution
of the example with J = 7 is given in Table 2. Figure 2 shows the comparison of the HWCM
solution with the exact solution.
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Table 1: Comparison of HWCM solution and exact solution for J = 8 at different x of
Example 1

x y(x)
HWCM Exact

0.000977 1.000978 1.000978
0.041992 1.044726 1.044725
0.122070 1.146670 1.146669
0.254883 1.374137 1.374136
0.354492 1.604588 1.604586
0.444336 1.867346 1.867344
0.559570 2.297856 2.297854
0.684570 2.912192 2.912188
0.758789 3.365339 3.365334
0.874023 4.227293 4.227287
0.999023 5.425964 5.425956

Table 2: Comparison of HWCM solution and exact solution for J = 7 at different x of
Example 2

x u(x) v(x)
HWCM Exact HWCM Exact

0.001953 1.001950 1.001953 1.000004 1.000004
0.044922 1.044919 1.044922 1.002018 1.002018
0.123047 1.123044 1.123047 1.015139 1.015141
0.263672 1.263668 1.263672 1.069521 1.069523
0.345703 1.345699 1.345703 1.119508 1.119511
0.443359 1.443355 1.443359 1.196564 1.196568
0.560547 1.560542 1.560547 1.314208 1.314213
0.650391 1.650386 1.650391 1.423002 1.423008
0.775391 1.775385 1.775391 1.601224 1.601231
0.849609 1.849604 1.849609 1.721829 1.721836
0.998047 1.998041 1.998047 1.996089 1.996098
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Figure 1: Comparison of HWCM solution and exact solution of Example 1

Figure 2: Comparison of HWCM solution and exact solution of Example 2

4 Conclusion

In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve
Volterra and system of Volterra integral equations. The numerical scheme is tested for two
example. The obtained numerical results are compared with the exact solutions, and are found
to be in good agreement. Thus the Haar wavelet method guarantees the necessary accuracy
with a small number of grid points.
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Abstract: Parabolic partial differential equations arise in the mathematical modelling of many
physical phenomena. In this paper, we use Haar wavelet method for the numerical solution of
one dimensional homogeneous and inhomogeneous heat equation. The basic idea of Haar
wavelet collocation method is to convert the partial differential equation into a system of alge-
braic equations that involves a finite number of variables. The numerical results are compared
with the exact solution to prove the accuracy of the Haar wavelet method.
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1 Introduction

A differential equation that contains partial unknown multivariable functions and their partial
derivatives is called partial differential equation (PDE). Partial differential equations are used
to formulate problems involving functions of several variables, and are either solved by hand,
or used to create a relevant computer model. Partial differential equations can also be used to
describe a wide variety of phenomena such as sound, heat, electrostatics, electrodynamics, fluid
flow, elasticity, or quantum mechanics. Just as ordinary differential equations often model one-
dimensional dynamical systems, partial differential equations often model multidimensional
systems.

The Haar wavelet [1] is the principal known wavelet and was proposed in 1909 by Al-
fred Haar. The Haar wavelet is likewise the least complex conceivable wavelet. Over the recent
decades, wavelets by and large have picked up a respectable status because of their applications
in different disciplines and in that capacity have numerous examples of overcoming adversity.
Prominent effects of their studies are in the fields of signal and image processing, numerical
analysis, differential and integral equations, tomography, and so on. A standout amongst the
best utilizations of wavelets has been in image processing. The FBI has built up a wavelet based
algorithm for fingerprint compression. Wavelets have the capability to designate functions at
different levels of resolution, which permits building up a chain of approximate solutions of
equations. Compactly supported wavelets are localized in space, wherein solutions can be re-
fined in regions of sharp variations/transients without going for new grid generation, which is
the basic methodology in established numerical schemes. Sumana and Achala [2] have given a
brief report on Haar wavelets.

Chen and Hsiao [3] recommended to expand into the Haar series the highest order deriva-
tives appearing in the differential equation. This idea has been very prolific and it is being
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abundantly applied for the solution of PDEs. The wavelet coefficients appearing in the Haar se-
ries are calculated either using Collocation method or Galerkin method. Lepik [4] applied Haar
wavelets to solve evolution equations. Shi et. al. [5] solved wave equation using Haar wavelets.
Ram Jiwari [6] used Haar wavelets to solve Burgers equation. Hariharan et. al. [7, 8, 9, 10, 11]
applied Haar wavelets to solve Cahn-Allen Equation, Fisher’s equation, FitzHugh-Nagumo
equation, Klein-Gordon equation, Sine-Gordon equation and some nonlinear parabolic equa-
tions. Dhawan et. al. [12] solved heat equation using Haar wavelets. Lepik [13] used two-
dimensional Haar wavelets to solve diffusion equation and Poisson equation. Wang and Zhao
[14] solved two-dimensional Burgers equation using two-dimensional Haar wavelets. Celik
[15, 16] used Haar wavelets to solve magnetohydrodynamic flow equations and generalized
Burgers-Huxley equation. Bujurke et. al. [17] applied wavelet-multigrid method to solve el-
liptic partial differential equations. Kumar and Pandit [18] used a composite numerical scheme
based on Haar wavelets for the numerical simulation of coupled Burgers equation.

2 Preliminaries of Haar wavelets

The Haar wavelet family for x ∈ [0, 1] is defined as follows [1]

hi(x) =


1 for x ∈ [ξ1, ξ2)

−1 for x ∈ [ξ2, ξ3)

0 elsewhere

(1)

where

ξ1 =
k

m
, ξ2 =

k + 0.5

m
, ξ3 =

k + 1

m
(2)

In the above definition m = 2n, n = 0, 1, ..., J indicates the level of the wavelet; k =
0, 1, ...,m − 1 is the translation parameter. J is the maximum level of resolution. The in-
dex i in equation (1) is calculated by the formula i = m+k+1. In the case of minimum values
m = 1, k = 0 we have i = 2. The maximum value of i is i = 2M = 2J+1.

For i = 1 , h1(x) is assumed to be the scaling function which is defined as follows.

h1(x) =

1 for x ∈ [0, 1)

0 elsewhere
(3)

In order to solve PDEs of any order, we need the following integrals.

pi(x) =

∫ x

0

hi(x)dx =


x− ξ1 for x ∈ [ξ1, ξ2)

ξ3 − x for x ∈ [ξ2, ξ3)

0 elsewhere

(4)
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qi(x) =

∫ x

0

pi(x)dx =



1

2
(x− ξ1)2 for x ∈ [ξ1, ξ2)

1

4m2
− 1

2
(ξ3 − x)2 for x ∈ [ξ2, ξ3)

1

4m2
for x ∈ [ξ3, 1]

0 elsewhere

(5)

2.1 Function approximation
Any function f(x) which is square integrable on (0, 1) can be expressed as an infinite sum of
Haar wavelets as

f(x) =
∞∑
i=1

a(i)hi(x), (6)

where

a(i) =

∫ 1

0

f(x)hi(x)dx. (7)

If f(x) is approximated as piecewise constant during each subinterval, then equation (6)
will be terminated at finite terms, i.e.

f(x) =
2M∑
i=1

a(i)hi(x), (8)

where the wavelet coefficients a(i), i = 1, 2, . . . , 2M are to be determined.

3 Method of solution

3.1 One dimensional heat equation
Consider the one-dimensional heat equation

∂u

∂t
= c

∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0 (9)

with initial and boundary conditions

u(x, 0) = f(x), 0 ≤ x ≤ 1 (10)

u(0, t) = g1(t), t ≥ 0 (11)

u(1, t) = g2(t), t ≥ 0 (12)

Divide the interval [0, T ] intoN equal parts of length ∆t = T
N

and denote ts = (s−1)∆t, s =
1, 2, 3...N

Let the Haar wavelet solution be in the form

u̇′′(x, t) =
2M∑
i=1

as(i)hi(x) (13)
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Integrating equation (13) w.r.t. t in the limits [ts, t], we get

u′′(x, t) = (t− ts)
2M∑
i=1

as(i)hi(x) + u′′(x, ts) (14)

Integrating equation (14) w.r.t. x in the limits [0, x], we obtain

u′(x, t) = (t− ts)
2M∑
i=1

as(i)pi(x) + u′(x, ts) + u′(0, t)− u′(0, ts) (15)

Integrating equation (15) w.r.t. x in the limits [0, x], we arrive at

u(x, t) = (t− ts)
2M∑
i=1

as(i)qi(x) + u(x, ts) + u(0, t)− u(0, ts) + x[u′(0, t)− u′(0, ts)] (16)

Differentiating equation (16) w.r.t. t gives

u̇(x, t) = (t− ts)
2M∑
i=1

as(i)qi(x) + u̇(0, t) + xu̇′(0, t) (17)

Using equation (11) in equations (16) and (17), we get

u(x, t) = (t− ts)
2M∑
i=1

as(i)qi(x) + u(x, ts) + g1(t)− g1(ts) + x[u′(0, t)− u′(0, ts)] (18)

u̇(x, t) =
2M∑
i=1

as(i)qi(x) + ġ1(t) + xu̇′(0, t) (19)

Putting x = 1 in equations (18) and (19), and using equation (12) gives

u′(0, t)− u′(0, ts) = −(t− ts)
2M∑
i=1

as(i)qi(1) + g2(t)− g2(ts)− g1(t) + g1(ts) (20)

u̇′(0, t) = −
2M∑
i=1

as(i)qi(1) + ġ2(t)− ġ1(t) (21)

Substituting equation (20) in equations (15) and (20), and equation (21) in equation (19), we
have

u′(x, t) = (t− ts)
2M∑
i=1

as(i)[pi(x)− qi(1)] + u′(x, ts) + g2(t)− g2(ts)− g1(t) + g1(ts) (22)

u(x, t) = (t− ts)
2M∑
i=1

as(i)[qi(x)− xqi(1)] + u(x, ts) + x[g2(t)− g2(ts)]

+(1− x)[g1(t)− g1(ts)]
(23)

u̇(x, t) =
2M∑
i=1

as(i)[qi(x)− xqi(1)] + xġ2(t) + (1− x)ġ1(t) (24)
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Substituting equations (14) and (24) in equation (9), we obtain

2M∑
i=1

as(i)[qi(x)− xqi(1)− c(t− ts)hi(x)] = cu′′(x, ts)− xġ2(t)− (1− x)ġ1(t) (25)

The wavelet collocation points are defined as,

xl =
l − 0.5

2M
, l = 1, 2, . . . , 2M (26)

Taking x→ xl, t→ ts+1 in equations (25), (23) and (14) gives

2M∑
i=1

as(i)[qi(xl)− xlqi(1)− c(∆t)hi(xl)] = cu′′(xl, ts)− xlġ2(ts+1)− (1− xl)ġ1(ts+1) (27)

u(xl, ts+1) = ∆t
2M∑
i=1

as(i)[qi(xl)− xlqi(1)] + u(xl, ts) + xl[g2(ts+1)− g2(ts)]

+(1− xl)[g1(ts+1)− g1(ts)]
(28)

u′′(xl, ts+1) = ∆t
2M∑
i=1

as(i)hi(xl) + u′′(xl, ts) (29)

Using the initial conditions (10), we have

u(xl, 0) = f(xl)
u′(xl, 0) = f ′(xl)
u′′(xl, 0) = f ′′(xl)

(30)

The wavelet coefficients as(i), i = 1, 2, . . . , 2M can be successively calculated from equation
(27). This process is started with equation (30). These coefficients are then substituted in
equations (28) and (29) to obtain the approximate solutions at different time levels.

3.2 Inhomogeneous one-dimensional heat equation
Consider the inhomogeneous one-dimensional heat equation

∂u

∂t
= c

∂2u

∂x2
+ F (x, t), 0 ≤ x ≤ 1, t ≥ 0 (31)

with initial and boundary conditions

u(x, 0) = f(x), 0 ≤ x ≤ 1 (32)

u(0, t) = g1(t), t ≥ 0 (33)

u(1, t) = g2(t), t ≥ 0 (34)

Substituting (14) and (24) in (31) and taking x → xl, t → ts+1 in the resultant equation, we
obtain

2M∑
i=1

as(i)[qi(xl)− xlqi(1)− c(∆t)hi(xl)] = cu′′(xl, ts)− xlġ2(ts+1)− (1− xl)ġ1(ts+1)

+F (xl, ts+1)

(35)
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4 Examples and Discussions
In this section, two examples each of one-dimensional heat equation and inhomogeneous heat
equation are solved, and the efficiency and accuracy of the Haar wavelet collocation method
(HWCM) are discussed. Lagrange’s interpolation and cubic-spline interpolation are used to
find the solution of the heat equation and inhomogeneous heat equation respectively at the in-
dicated points.

Example 1:

∂u

∂t
=
∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0,

u(x, 0) = sin(πx), 0 ≤ x ≤ 1,

u(0, t) = 0

u(1, t) = 0

}
t ≥ 0.

(36)

The exact solution is
u(x, t) = e−π

2t sin(πx) (37)

The HWCM solution of the example at t = 0.1, 0.2 with M = 32 and ∆t = 0.0001 is given
in Table 1. Figure 1 shows the comparison of the HWCM solution with the exact solution at
t = 0.1 and t = 0.2. Figure 2 depicts the physical behavior of the HWCM solution in contour
and 3D.

If uex(x, ts) is the exact solution (37) at t = ts, we define the error estimate as

µ(ts) =
1

2M
‖u(x, ts)− uex(x, ts)‖ (38)

We have obtained the following error estimates for M = 32 and ∆t = 0.0001.
(i) µ(0.1) = 1.8340E − 05 in L2 space and µ(0.1) = 3.2411E − 06 in L∞ space.

(ii) µ(0.2) = 1.7164E − 05 in L2 space and µ(0.2) = 3.0333E − 06 in L∞ space.

Example 2:

∂u

∂t
=

4

π2

∂2u

∂x2
, 0 ≤ x ≤ 4, t ≥ 0,

u(x, 0) = sin
(πx

4

)(
1 + 2 cos

(πx
4

))
, 0 ≤ x ≤ 4

u(0, t) = 0

u(4, t) = 0

}
t ≥ 0.

(39)

The exact solution is
u(x, t) = e−t sin

(πx
2

)
+ e−

t
4 sin

(πx
4

)
(40)

The HWCM solution of the example at t = 0.1, 0.2 with M = 32 and ∆t = 0.001 is given
in Table 2. Figure 3 shows the comparison of the HWCM solution with the exact solution at
t = 0.1 and t = 0.2. Figure 4 depicts the physical behavior of the HWCM solution in contour

114



MES Bulletin of Applied Sciences Volume 1, Issue 1, 2018

and 3D.

We have obtained the following error estimates for M = 32 and ∆t = 0.001.
(i) µ(0.1) = 4.1726E − 06 in L2 space and µ(0.1) = 7.7000E − 07 in L∞ space.

(ii) µ(0.2) = 7.8744E − 06 in L2 space and µ(0.2) = 1.4558E − 06 in L∞ space.

Example 3:

∂u

∂t
=
∂2u

∂x2
− π2 sin(πx), 0 ≤ x ≤ 1, t ≥ 0,

u(x, 0) = sin(2πx), 0 ≤ x ≤ 1,

u(0, t) = 0

u(1, t) = 0

}
t ≥ 0.

(41)

The exact solution is

u(x, t) = (e−π
2t − 1) sin(πx) + e−4π

2t sin(2πx) (42)

The HWCM solution of the example at t = 0.1, 0.2 with M = 64 and ∆t = 0.0001 is given
in Table 3. Figure 5 shows the comparison of the HWCM solution with the exact solution at
t = 0.1 and t = 0.2. Figure 6 depicts the physical behavior of the HWCM solution in contour
and 3D.

We have obtained the following error estimates for M = 64 and ∆t = 0.0001.
(i) µ(0.1) = 1.9117E − 05 in L2 space and µ(0.1) = 2.9859E − 06 in L∞ space.

(ii) µ(0.2) = 1.1476E − 05 in L2 space and µ(0.2) = 1.7386E − 06 in L∞ space.

Example 4:

∂u

∂t
= 3

∂2u

∂x2
+ 18x, 0 ≤ x ≤ 1, t ≥ 0,

u(x, 0) = sin(πx)− x3, 0 ≤ x ≤ 1,

u(0, t) = 0

u(1, t) = 0

}
t ≥ 0.

(43)

The exact solution is
u(x, t) = e−3π

2t sin(πx)− x3 (44)

The HWCM solution of the example at t = 0.1, 0.2 with M = 32 and ∆t = 0.0001 is given
in Table 2.4. Figure 7 shows the comparison of the HWCM solution with the exact solution at
t = 0.1 and t = 0.2. Figure 8 depicts the physical behavior of the HWCM solution in contour
and 3D.

We have obtained the following error estimates for M = 32 and ∆t = 0.0001.
(i) µ(0.1) = 2.7112E − 05 in L2 space and µ(0.1) = 4.7914E − 06 in L∞ space.

(ii) µ(0.2) = 1.0788E − 05 in L2 space and µ(0.2) = 1.9066E − 06 in L∞ space.
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Table 1: Comparison of the HWCM solution and exact solution of Example 1

x u(x, t)
t = 0.1 t = 0.2

HWCM Exact HWCM Exact
0.1 0.11523721 0.11517306 0.04298591 0.04292590
0.2 0.21919413 0.21907217 0.08176406 0.08164992
0.3 0.30169484 0.30152698 0.11253857 0.11238147
0.4 0.35466356 0.35446622 0.13229702 0.13211234
0.5 0.37291533 0.37270784 0.13910532 0.13891113
0.6 0.35466356 0.35446622 0.13229702 0.13211234
0.7 0.30169484 0.30152698 0.11253857 0.11238147
0.8 0.21919413 0.21907217 0.08176406 0.08164992
0.9 0.11523719 0.11517306 0.04298592 0.04292590
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Table 2: Comparison of the HWCM solution and exact solution of Example 2

x u(x, t)
t = 0.1 t = 0.2

HWCM Exact HWCM Exact
0.1 0.83326643 0.83323743 0.77523844 0.77518392
0.2 1.43387092 1.43382431 1.33786594 1.33777785
0.3 1.64964111 1.64959382 1.54830943 1.54821999
0.4 1.45945555 1.45942494 1.38596882 1.38591080
0.5 0.97531299 0.97530991 0.95123549 0.95122942
0.6 0.39570000 0.39572476 0.42338861 0.42343508
0.7 -0.07155154 -0.07150923 -0.00917807 -0.00909845
0.8 -0.28732173 -0.28727874 -0.21962156 -0.21954059
0.9 -0.23048968 -0.23046275 -0.18734240 -0.18729180

Table 3: Comparison of the HWCM solution and exact solution of Example 3

x u(x, t)
t = 0.1 t = 0.2

HWCM Exact HWCM Exact
0.1 -0.18230193 -0.18250186 -0.26576365 -0.26587223
0.2 -0.35002123 -0.35036121 -0.50559235 -0.50578121
0.3 -0.48875658 -0.48913814 -0.69605935 -0.69628140
0.4 -0.58492761 -0.58524822 -0.81852041 -0.81872532
0.5 -0.62710420 -0.62729216 -0.86093885 -0.86108887
0.6 -0.60789545 -0.60793238 -0.81908259 -0.81916304
0.7 -0.52591933 -0.52584189 -0.69696897 -0.69698965
0.8 -0.38718397 -0.38706496 -0.50650197 -0.50648946
0.9 -0.20526977 -0.20518602 -0.26632583 -0.26630995

Table 4: Comparison of the HWCM solution and exact solution of Example 4

x u(x, t)
t = 0.1 t = 0.2

HWCM Exact HWCM Exact
0.1 0.01509361 0.01499882 -0.00013397 -0.00017169
0.2 0.02261186 0.02243156 -0.00635272 -0.00642446
0.3 0.01513361 0.01488545 -0.02473271 -0.02483145
0.4 -0.01446897 -0.01476070 -0.06133464 -0.06145072
0.5 -0.07291999 -0.07322673 -0.12219747 -0.12231953
0.6 -0.16646897 -0.16676070 -0.21333464 -0.21345072
0.7 -0.30086639 -0.30111455 -0.34073271 -0.34083145
0.8 -0.48138814 -0.48156844 -0.51035272 -0.51042446
0.9 -0.71290637 -0.71300118 -0.72813395 -0.72817169
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Figure 1: Comparison of the HWCM solution and exact solution of Example 1
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Figure 2: Physical behaviour of the HWCM solution of u(x, t) of Example 1
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Figure 3: Comparison of the HWCM solution and exact solution of Example 2
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Figure 4: Physical behaviour of the HWCM solution of u(x, t) of Example 2
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Figure 5: Comparison of the HWCM solution and exact solution of Example 3
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Figure 6: Physical behaviour of the HWCM solution of u(x, t) of Example 3
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Figure 7: Comparison of the HWCM solution and exact solution of Example 4
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Figure 8: Physical behaviour of the HWCM solution of u(x, t) of Example 4

5 Conclusion
In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve
parabolic differential equations namely one-dimensional homogeneous and inhomogeneous
heat equation. The numerical scheme is tested for four examples. The obtained numerical
results are compared with the exact solutions and are found to be in good agreement. We ob-
serve that the error estimates are negligibly small compared to the number of grid points. Thus
the Haar wavelet method guarantees the necessary accuracy with a small number of grid points.
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