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Abstract: In this paper we are studying the different forms of Euler equations such as
conservative form, primitive form and other forms; as well as representing them in vector-
matrix notation. Further we have studied about the propulsion, the reason for jet propul-
sion, types of jet propulsion and learn in detail about Ramjet engine. We study the principle
of operation of Ramjet engine, its pros and cons, its applications and consider some of the
examples based on its propulsion in order to find the efficiency of ideal cycle, velocity, air
flow rate, fuel-air ratio, propulsive efficiency, thrust, density and temperature.

Keywords: Euler equation, Vector-matrix notation, Primitive variable, propulsion system,
Rankine-Hugoniot, Ramjet engine, Jet propulsion.

AMS Subject Classification: 76N15.

1 Introduction

In general, Fluid mechanics of compressible flow is referred as Gas Dynamics. The study
of Gas dynamics is linked with flight, high-speed aircraft, satellites, jets and other space ex-
ploration vehicles. Therefore, in applications like this, compressible fluid dynamics is used to
obtain solutions of a number of design problems. Fluid mechanics analyzes high speed flows of
gases and vapours that are inadequate without considering compressibility. Some of the recent
advances made in this area are in transonic, supersonic and hypersonic flows, and unsteady
flows in rotating and reciprocating machines, given by Yahya [1]. Laney [2] has broadly ana-
lyzed the governing equations of gas dynamics, representing Euler equations in vector-matrix
notation and mainly concerns about Euler equations.

Zucker [3] introduces the Mach number as a key parameter and found that in case of a
perfect gas, it is very simple to express basic equations of compressible fluid. Liepmann
and Roshko [4] began his study of the motion of compressible fluids with the case of one-
dimensional flow. The aim of this book is to modernize and extend the treatment of compress-
ible fluid aerodynamics. Anderson [5] has given some history and introductory thoughts on
compressible fluid flow and also explained the integral and differential conservation equation
for inviscid flows.

Hirsch [6] has determined the solution of the system of Euler equations. He examined the
conservation formulation of the Euler equation and has given the Rankine-Hugoniot relations.
Oksuzoglu [7] has considered the example of Rankine-Hugoniot from the gas dynamics for
shock speed and derivation of the same in terms of jump conditions. Spurk [8] has guided
with a good number of exercises designed to develop the ability to model and solve practi-
cal problems on steady and unsteady compressible flows. John and Keith [9] has showed that
significant conclusions can be drawn concerning the basic differences between incompressible
and compressible flows. John [10] aims to foster a deeper understanding of compressible flow
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and gas dynamics fundamentals.

There are different types of fluid such as compressible flow where density of the fluid varies
from point to point (ρ 6= constant), incompressible flow whose density remains constant (ρ =
constant). Sonic flow has Mach number as one that is fluid velocity is same as sound speed.
Subsonic flow where Mach number as 0 < M < 0.8 that is Velocity of the fluid is slower than
the speed of sound. Supersonic flow has Mach number as 0.8 < M < 1.4 so Velocity of the
fluid is larger than the speed of sound. In Hypersonic flow Mach number starts from 5 and
above that means velocity exceeds the speed of sound.

Some Basic definitions
F Mach number: Mach number is the ratio of velocity of moving aircraft to speed of

sound.
M =

u

c
(1)

where, u is flight speed and c is speed of sound.
F Mass flow rate:

udt Volume, dq = Audt,

Volume flow rate,
dq

dt
= Au

Q̇ = Au

Mass flow rate,

dm = ρdq,

ṁa = ρAu (2)

F Fuel-air ratio: Fuel-air ratio is the ratio of fuel to air.

FAR =
ṁf

ṁa

(3)

where, ṁf is mass of fuel and ṁa is mass of air.
F Thrust: Thrust is a force used to push an object suddenly and strongly. Force is change

in momentum with time,
F =

mu2 −mu1
t2 − t1

(4)

Since equation (2) already contains the time dependence, we can express the change in
momentum across the propulsion devices as change in mass flow rate times the velocity.

F = ṁue − ṁau (5)

where, ue is exit velocity and u is velocity of aircraft.
F Propulsion efficiency: Propulsion efficiency is the ratio of thrust power to the rate of

production of propellent kinetic energy.

ηp =
Fu

ṁ

[
u2e
2
− u2

2

] (6)

2
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Substituting for F from equation (5) we get,

ηp =
2(ue − u)u

u2e − u2
,

ηp =
2u

ue + u
(7)

F Stagnation temperature: Stagnation temperature is the temperature at a stagnation
point in a fluid flow. Then for Adiabatic process the energy equation by ignoring the
heat, work and gravitational potential energy terms we have,

h0 = h+
u2e
2

(8)

where, h0 is stagnation enthalpy at stagnation point, h is static enthalpy at point of interest
along stagnation streamlines with h = cpT and ue is exit velocity.

Hence, T0 = T +
u2e
2cp

(9)

F Efficiency of ideal cycle: Ideal efficiency of Ramjet engine is given by,

ηi = 1− 1

t
(10)

Here, t is the temperature ratio given by equation (9) and substituting cp =
γR

γ − 1
and

c =
√
γRT we get,

ηi =
1

1 +
2

γ − 1

1

M2
i

(11)

Basic Equations of Gas Dynamics:
• Bernoulli’s equation for compressible flow :

u21
2

+
γ

γ − 1

p1
ρ1

=
u22
2

+
γ

γ − 1

p1
ρ1

(
p2
p1

) (γ−1)
γ

.

• Equation of state of ideal gas : ρ2 =
p2
RT2

• The energy equation :
u22
2

+ h2 + q =
u23
2

+ h3 with h = cpT [4]
• Isentropic relation :
T2
T1

=

(
p2
p1

) γ−1
γ

[4]

2 Basic Equations in Vector notation
Mass, momentum and energy are called conserved quantities. Define a vector of conserved

quantities as,

u =

 ρ
ρu
ρeT

 (12)
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where, u1 = ρ (mass per unit volume), u2 = ρu (momentum per unit volume), u3 = ρeT (
energy per unit volume).
Let f be the flux with components f1, f2, f3 where, f1 = ρu (mass flux), f2 = ρu2+p(momentum
flux with pressure), f3 = (ρeT + p)u(total energy flux with pressure). Then the flux vector is
given by,

f =

 ρu
ρu2 + p

(ρeT + p)u

 (13)

(or)

f =

 ρu
ρu2 + p
ρhTu

 (14)

where, hT = eT + p
ρ

(Specific total enthalpy)
Separating the flux and pressure contributions from (13) we have,

f =

 ρu
ρu2

ρueT

 +

 0
p
pu

 (15)

Using the vector notation, the Conservation form can be written as,

∂u

∂t
+
∂f

∂x
= 0. (16)

The flux vector f can be written as a function of the conserved quantities u.
u1 = ρ, u2 = ρu, u3 = ρeT , f1 = ρu, f2 = ρu2 + p, f3 = (ρeT + p)u
Consider,

f2 = ρu2 + p,

= ρu2 + (γ − 1)(ρeT −
1

2
ρu2),

=
1

2

ρ2u2

ρ
(3− γ) + (γ − 1)ρeT ,

f2 =
1

2

u22
u1

(3− γ) + (γ − 1)u3. (17)

Similarly we can find,

f1 = u2. (18)

f3 =
γu2u3
u1

− (γ − 1)

2

u32
u21
. (19)

Applying chain rule for
∂f

∂x
and substituting in (16) we get,

∂u

∂t
+ A

∂u

∂x
= 0. (20)

where, A is
∂f

∂u
and is called the Jacobian matrix of f .

Differentiating f1, f2, f3 with respect to u1, u2, u3 and substituting in A we get,

4
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A =

 0 1 0
(γ−3)

2
u2 (3− γ)u γ − 1

−γueT + (γ − 1)u3 γeT − 3
2
(γ − 1)u2 γu

 . (21)

We know that,

hT =
1

2
u2 +

1

γ − 1
a2. (22)

γeT =
γ

2
u2 +

1

γ − 1
a2. (23)

Solving (22) and (23) and substituting for
∂f3
∂u1

and
∂f3
∂u2

in (21) we get,

A =

 0 1 0
(γ−3)

2
u2 (3− γ)u γ − 1

−uhT + 1
2
(γ − 1)u3 hT − (γ − 1)u2 γu

 . (24)

3 The primitive variable form of the Euler equation

Primitive variable form is another differential form of the Euler equations. Consider the
substantial or material derivative,

D

Dt
=

∂

∂t
+ u

∂

∂x
. (25)

Using (25) we can find the primitive variable form of the following governing equations,

1. Conservation of Mass
The Continuity equation is given by,

∂ρ

∂t
+∇ · (ρ~u) = 0,

∂ρ

∂t
+ (∇ · ~u)ρ+ ~u · ∇ρ = 0,

Dρ

Dt
+ ρ

∂u

∂x
= 0. (26)

2. Conservation of momentum
Du

Dt
+

1

ρ

∂p

∂x
= 0. (27)

3. Conservation of Energy
Dp

Dt
+ ρa2

∂u

∂x
= 0. (28)

4. The second law of Thermodynamics

Ds

Dt
≥ 0. (29)
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Equations (26), (27), (28) and (29) are the primitive variable form of the Euler equations.
The primitive variable form of Euler equations (26), (27), (28) can also be written in vector
matrix form as,

∂w

∂t
+ C

∂w

∂x
= 0. (30)

where, w =

ρu
p

 , C =

u ρ 0
0 u 1

ρ

0 ρa2 u

 and we have, u =

 ρ
ρu
ρeT



we notice that, Q =
du

dw
=

 1 0 0
u ρ 0

1
2
u2 ρu 1

γ−1

 . (31)

where, du =
∂u

∂x
and dw =

∂w

∂x
.

Hence we have du = Qdw and similarly dw = Q−1du.

where, Q−1 =
dw

du
=

 1 0 0
−1
ρ
u 1

ρ
0

1
2
(γ − 1)u2 −(γ − 1)u γ − 1

 . (32)

Substituting ∂u in (20) we get,

Q
∂w

∂t
+ AQ

∂w

∂x
= 0.

∂w

∂t
+Q−1AQ

∂w

∂x
= 0. (33)

Comparing with equation (30) we get,

C = Q−1AQ. (34)

where, A and C are similar matrices.

4 Other form of the Euler equation
Euler equations are mainly written using Conservative form and the Primitive variable form.

Other forms of Euler equations are formed by multiplying the Euler equation by an invertible 3
× 3 matrix. Multiplying both sides of the equation (20) by invertible 3 × 3 matrix Q−1 we get,

Q−1
∂u

∂t
+Q−1A

∂u

∂x
= 0. (35)

In equation (35) we notice that there is no change in dependent variables. But there is change
in equation. Multiplying both sides (30) by Q−1,

Q−1
∂w

∂t
+Q−1C

∂u

∂x
= 0. (36)

In equation (36) there is no change in dependent variables. But there is a change in equation.
Rewrite equation (35) as,

Q−1
∂u

∂t
+Q−1AQQ−1

∂u

∂x
= 0. (37)
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Consider linear change of dependent variables u to v,

dv = Q−1du, (38)

then,
∂v

∂x
= Q−1

∂u

∂x
and

∂v

∂t
= Q−1

∂u

∂t
. (39)

Substituting (39) in equation (37) we get,

∂v

∂x
+Q−1AQ

∂v

∂t
= 0. (40)

5 Ramjet engine

Figure 1: Rene Leduc (1898-1968)

Rene Leduc was a French engineer, self
educated and multitalented person. He was
publicly praised for his major achievements
on Ramjets. In one of the Aerostories by
Philippe Ricco [11] he has mentioned that,
in 1913, Rene Lorin first published the prin-
ciple in the technical review “Aerophile” and
invented the Ramjet in France. Unfortunately,
he could not build his invention. In 1933, Rene
Leduc became the first aeronautical designer
to successfully develop the Ramjet engine.
He discovered Lorin’s publications and paid
great respect and honor to Lorin’s work. Af-
ter months of efforts, he was able to clearly
show the existence of the practical application
of this theory in the year 1936.

John and Keith [9] explain compressible flow, isentropic flow through nozzle and explains
the variation in stagnation properties that defines the reference state of compressible flow and
stagnation pressure in steady isentropic flow. Yahya [1] has given the basic definitions like
mach number, stagnation pressure ratio, isentropic relation and involves problems of com-
pressible flow. Problems have been specially chosen in the areas of aerospace, chemical, gas
and mechanical engineering. Roy and Pradeep [12] have explained in their lectures about the
basic aspects of jet aircraft propulsion. The focus is primarily on the aircraft propulsion mode
that is the air breathing mode of propulsion.

Hill and Peterson [13] have proceeded under the principle that a few fundamental phys-
ical principles can with suitable application gives an understanding of all aspects of aircraft
and spacecraft propulsion. Furthermore, explained about the jet propulsion and air breathing
engines. Krueger [14] detailed about propulsive efficiency as a key indicator of propulsive per-
formance, but it can be difficult to measure when the propulsion system is integrated into the
vehicle body because the average rate of useful work done propelling the vehicle and/or the
average mechanical power expended propelling the vehicle is not known directly. Whittle [15]
has briefly told about the early history of the development of the jet propulsion gas turbine in
Great Britain, concentrating chiefly on the story up to the first flight tests in May 1941.

7
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6 Jet propulsion system

Propulsion: Propulsion is derived from latin words: Pro means backward or forward; Pellere
means to drive. Hence propulsion means to drive an object forward.

Propulsion system: Propulsion system is a system that converts mechanical power into propul-
sive force.

Propeller (M∆v) : Propeller is a device that is used to push the aircraft forward or backward.
It has low subsonic flight speed. To overcome this obstacle Jet Propulsion was introduced.

Jet propulsion system is a propulsion of jet aircraft which uses atmospheric air. Jet Propul-
sion is a practical application of Newton’s third law of motion. “For every force acting on a
body there is an equal and opposite reaction”. The Jet engine accelerates mass in one direction
and experiences thrust in opposite direction. It uses air to burn fuel. In contrast to propeller,
Jet propulsion system imparts a large velocity change to small mass air so that large amount of
thrust can be produced to improve flight speed to high subsonic flight speeds.

Types of jet propulsion system

The jet propulsion system are classified based on the method of operation. One is atmo-
spheric jet engine and the other is rockets. They are: Ramjet, Scramjet, Turbojet, Turbofan,
Turboprop, Pulsejet engine.

7 Ramjet engine

Figure 2: Design of a Ramjet engine

Ramjet engine is most basic type of jet engine available. It is an air breathing engine hence
it uses oxygen as oxidiser and hydrogen as propellent. It compress air supersonic speed to
subsonic speed. Though this engine has no moving parts inside it, there are only three parts:

CONVERGING INLET: Air is compressed to a very high ratio and sent inside the engine.

COMBUSTION CHAMBER: Fuel is injected and flame holder burn the fuel-air mix. Since
it have high enthalpy they flow rapidly towards nozzle.

A NOZZLE: Air squeezes out through nozzle and there is increase in velocity due to thrust.

8
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8 Principle of working of the Ramjet

Figure 2: Working of Ramjet engine

Atmospheric air enters the supersonic diffuser which reduces the velocity and increases the
static pressure. Further it passes through the subsonic diffuser where the velocity reduces to
subsonic value and the pressure of air increases to ignition pressure. This pressure then flows
to the combustion chamber where air-fuel mixture is burnt. Later the highly heated products
are allowed to expand in the exhaust nozzle where the energy of gas is converted into kinetic
energy with very high velocity. This type of transformation in energy is called the Ram effect
and the rise in pressure is called Ram pressure. Hence thrust is produced in opposite direction
which helps in propulsion of aircraft.

9 The study of efficiency of Ramjet engine

Considering a Ramjet engine propulsion in order to calculate the efficiency of ideal cycle,
flight speed, air flow rate, fuel-air ratio, propulsive efficiency and thrust.

Case 1: Propulsion taking place at mach number 1.4 with an initial temperature and pres-
sure 249.5K and 0.472 × 105N/m2. The radius of the inlet diffuser at entry is 20cm. The
stagnation temperature at the nozzle entry is 1500k with exit temperature 1129.5K and fuel
mass 1.015Kg/s. The property of combustion gases are same as that of air.(γ = 1.4, R =
287J/kgK)

(i) The efficiency of ideal cycle
ηi =

1

1 + 2
γ−1 ×

1
M2

1

ηi = 0.281 = 28.1%
(ii) Flight speed

Mach number, M1 =
u

c
, where c =

√
γRT

u = 443.1m/s
(iii) Air flow rate

ṁa = ρ1A1u , where A1 =
π

4
d2 and ρ1 =

p1
RT1

ṁa = 36.56Kg/s
(iv) Fuel-air ratio

FAR =
ṁf

ṁa

9
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FAR = 0.027
(v) Propulsion efficiency

ηp =
2u

ue + u
we have, T0 = Te + ue

2cp
and cp = γR

γ−1
ηp = 0.678 = 67.8%

(vi) Thrust
F = ṁue − ṁau , where ṁ = ṁa + ṁf

F = 16.22× 103N

Case 2 : Taking the following experimental values into consideration
M1 = 1.5, γ = 1.4, R = 287J/KgK, d = 50cm, T1 = 245.90K, p1 = 0.440bar, ṁf =
1.841Kg/s, T0 = 1600K,Te = 1163.027K

(i) The efficiency of ideal cycle
ηi = 0.3103

(ii) Flight speed
u = 471.48m/s

(iii) Air flow rate
ṁa = 57.66Kg/s

(iv) Fuel-air ratio
FAR = 0.0319

(v) Propulsion efficiency
ηp = 0.6694 = 67%

(vi) Thrust
F = 28.572× 103N

Case 3 : Considering a Ramjet engine propulsion with isentropic flow, isobaric heat addition
in order to calculate the exit velocity,upstream and downstream velocity of the combustion
chamber, temperature, density using the below experimental values [8]
u1 = 300m/s, p2 = p3 = 1.25bar = 1.25 × 105Pa, γ = 1.4, p0 = p1 = p4 = 0.8bar =
0.8× 105Pa, q23 = 300kJ/Kg,R = 287J/KgK, T1 = 273K,A1 = 1m2

(i) Upstream velocity
We have Bernoulli’s equation for compressible flow as

u21
2

+
γ

γ − 1

p1
ρ1

=
u22
2

+
γ

γ − 1

p1
ρ1

(
p2
p1

) (γ−1)
γ

p1
ρ1

= RT1

u2 =

√√√√u21 +
2γ

γ − 1
RT1

[
1−

(
p2
p1

) γ−1
γ

]

u2 = 124.14m/s
(ii) Temperature T2 and density ρ2

We have isentropic relation as
T2
T1

=

(
p2
p1

) γ−1
γ

T2 = T1

(
p2
p1

) γ−1
γ

T2 = 310.13K

10
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We have equation of state of ideal gas as,
ρ2 =

p2
RT2

ρ2 = 1.4044Kg/m3

(iii) Temperature T3 and density ρ3
Since heat addition is isobaric and it is inviscid fluid there is no pressure changes and no
particle acceleration.
Hence u2 = u3
The energy equation is given by,
u22
2

+ h2 + q =
u23
2

+ h3

with h = cpT
q23 = cp(T3 − T2)
using specific heat at constant pressure,

cp =
γR

γ − 1

hence, q23 =
γR

γ − 1
(T3 − T2)

T3 = q23
γ − 1

γR
+ T2

T3 = 608.79K

and ρ3 = 0.7154Kg/m3

(iv) Exit velocity u4 and density ρ4
Using the Bernoulli’s equation of compressible flow we get,

u4 =

√√√√u23 +
2γ

γ − 1
RT3

[
1−

(
p4
p3

) γ−1
γ

]

u4 = 402.28m/s

Isentropic relation is given by,
ρ4
ρ3

=

(
p4
p3

) 1
γ

ρ4 = 0.5201Kg/m3

Disadvantages of Ramjet engine
• Take-off thrust is zero. Hence to start Ramjet an external launching device is needed.
• The combustion chamber requires flame holder to stabilize the combustion because of

the high air speed.
• At lower speeds, the propulsive efficiency and thrust are lower.
• Sudden decrease of speed is difficult.

10 Applications of Ramjet engine
• Used in high speed air crafts and missiles.
• Subsonic Ramjets are used in target weapons.

11
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Figure 3: Test firing of the Akash missile from Integrated Test Range (ITR), Chandipur,
Odisha

The Defence Research and Development Organization (DRDO) developed a medium-range
mobile surface-to-air missile defense system called “Akash“. It was produced by Bharat Elec-
tronics (BEL) for other radars and Bharat Dynamics Limited (BDL) for Missile Systems, con-
trol centers in India. This missile system targets aircraft and has the capability to neutralize
air targets like fighter jets, air-to-surface missiles and cruise missiles. It is operated by Indian
Army and Indian Air Force. As mentioned in DRDO.gov.in this missile uses a solid propellant
which has high-energy and ram-rocket propulsion for the sustainer phase. It has better perfor-
mance with minimum mass and propulsion system provides high energy. As a result of the
successful test of the Akash missile system,“India has achieved the capability of making any
type of Surface to Air Missile”, the press release reads.

11 Results and Discussions

We have studied different forms of Euler equation and representing them in vector-matrix
notation. We have learnt about the jet propulsion system mainly the Ramjet engine and also
listed its principle of working. It makes use of high pressure in front of the engine which forces
the atmospheric air to pass through the stovepipe, where the air-fuel mixture is burnt. It is then
passed through a nozzle to accelerate which gives a forward thrust to the engine. We made use
of Bernoulli’s equation, energy equation and isentropic relation of compressible flow in order
to study the efficiency of propulsion of Ramjet in subsonic flow. We verified the working of
Ramjet and its efficiency by using available experimental data.
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ficiency of the propulsion system by considering an example.
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1 Introduction

In mathematics and other related fields, waves is considered to be a disturbance of a field in
which a physical attribute oscillates repeatedly at each point. Tipler [1] says wave motion can
be presented as the transport of energy and momentum from one point in space to a different
without the transport of matter. There is a theorem [2] which states that, “Simple wave is a flow
in a region adjacent to a region of constant state.” Compressive waves until shock wave forms
are also simple waves. The speed at which small amplitude disturbance are propagated to other
parts of the fluid is called the ‘acoustic speed or speed of sound’. Rozdestvenskii and Janenko
[3] have developed the general theory of quasi-linear systems of equations with application to
gas dynamics.

2 Waves for a scalar model problem

Consider a first order partial differential equation

∂u

∂t
+ a

∂u

∂x
= 0, (1)

where u = u(x, t).
• If a = constant, then equation (1) becomes linear
• If a = a(u, x, t), then equation (1) becomes quasi-linear.

Linear or quasi-linear, equation (1) has wave solution.

∂u

∂t
+ a

∂u

∂x
= (1, a)

(
∂u

∂t
,
∂u

∂x

)
= (1, a).∇u.

There is no change in the solution u in the direction of (1, a) in x− t plane.
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Figure 1: A typical wave diagram for a scalar model problem

Consider the curve which is tangent to (1, a) in the (x, t) plane. Let x = x(t) where the slope

of the vector (1, a) is a and the slope of the curve x = x(t) is
dx

dt
. Then, we get

u = constant for
dx

dt
= a (2)

where the curve
dx

dt
= a is called as wavefront or characteristics curve or simply characteristics,

u is the signal or wave information and a is the wave speed.

3 Waves for a vector model problem
Consider a system of first order partial differential equation

∂u

∂t
+ A

∂u

∂x
= 0 (3)

where u = u(x, t) and A is any square matrix. The system of equation (3) is hyperbolic if and
only if A is diagonalizable i.e. Q−1AQ = Λ where A is diagonal matrix with λi’s, λi are eigen
values of A, Q is a matrix containing ri’s in its column, ri is the right eigen vector of A, Q−1 is
a matrix containing li’s in its column, li is the left eigen vector of A.

The right characteristic vector is defined as Ari = λiri and the left characteristic vector are
defined as lTi A = λil

T
i . By left multiplying equation (3) with Q−1 we obtain

Q−1
∂u

∂t
+Q−1A

∂u

∂x
= 0 (4)

Equation (4) is called a characteristic form of equation (3).

The characteristic variable v is defined as

dv = Q−1du (5)

Then the characteristic form becomes,

∂v

∂t
+ Λ

∂v

∂x
= 0. (6)
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Now consider the ith equation in equation (6)

∂vi
∂t

+ λi
∂vi
∂x

= 0 (7)

where
vi = constant for

dx

dt
= λi. (8)

The curve dx = λidt is called wave fronts, the variable vi is called signals or characteristic
variables and λi is the wave speed or characteristic speed.

Figure 3: A typical wave diagram for a vector model problem

Here equation (7) says that the ith characteristic variable is constant along the ith characteristic
curve. Figure 3 intersections between characteristics of the same family are not any intersec-
tion between two characteristics from the same family creates a shock wave. Shock waves are
not governed by the ordinary characteristic equations, which originate in differential forms of
the governing equations, but instead are governed by jump relations and the theory of weak
solutions, which originate in integral forms of the governing equations.

Equation (5) may not always have an analytic solution. Even though dv is always analytically
defined, v may not be. Thus equation (8) becomes

dvi = 0 for
dx

dt
= λi. (9)

where dvi = 0 is called as compatibility relations and
dx

dt
= λi may not have an analytic

solution in some cases. The wave description is of more limited use when either dvi = 0 or
dx

dt
= λi lack an analytical solution.

3.1 The characteristic form of the Euler equations

Let us consider the Euler equation in the form
∂w

∂t
+ C

∂w

∂x
= 0 where

w =

ρu
p

 and C =

u ρ 0
0 u 1

ρ

0 ρa2 u
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Since C is diagonalizable we have Q−1C CQC = Λ. By right and left characteristic vectors
associated with the values of Λ and finding the determinant value of C we get,

QC =

1 ρ
2a
− ρ

2a

0 1
2

1
2

0 ρa
2
−ρa

2

 , Q−1C =

1 0 − 1
a

0 1 1
ρa

0 1 − 1
ρa

 and Λ =

u 0 0
0 u+ a 0
0 0 u− a

 .
Then by equation (4), a characteristic form of the Euler equation is given by

Q−1C
∂w

∂t
+Q−1C C

∂w

∂x
= 0, (10)

which can be written as

∂ρ

∂t
+ u

∂ρ

∂x
− 1

a2

(
∂p

∂t
+ u

∂p

∂x

)
= 0,

∂u

∂t
+ (u+ a)

∂u

∂x
+

1

ρa

(
∂p

∂t
+ (u+ a)

∂p

∂x

)
= 0,

∂u

∂t
+ (u− a)

∂u

∂x
− 1

ρa

(
∂p

∂t
+ (u− a)

∂p

∂x

)
= 0.

Then by equation (6), a characteristic form that involves characteristic rather than primitive
variables is given by

∂v

∂t
+ Λ

∂v

∂x
= 0,

∂v0
∂t

+ u
∂v0
∂x

= 0,

∂v+
∂t

+ (u+ a)
∂v+
∂x

= 0,

∂v−
∂t

+ (u− a)
∂v−
∂x

= 0

(11)

where,

dv = Q−1C dw,

dv0 = dρ− dp

a2
,

dv+ = du+
dp

ρa
,

dv− = du− dp

ρa
.

(12)

Using p = (γ − 2)

(
ρeT −

1

2
ρu2
)
, the Euler equation can be written as

dv0 = dρ− dp

a2
= 0 for dx = udt,

dv+ = du+
dp

ρa
= 0 for dx = (u+ a)dt,

dv− = du− dp

ρa
= 0 for dx = (u− a)dt.

(13)
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Integrating the compatibility relations, the above equations become

s = constant dx = udt, (14)

v+ = u+

∫
dp

ρa
= constant dx = (u+ a)dt, (15)

v− = u−
∫

dp

ρa
= constant dx = (u− a)dt. (16)

In general, only the first compatibility relation is fully analytically integrable. Also to show that
s = constant for dx = udt the specific entropy is given by s = cv ln(p)− cp ln(ρ) + constant,
and also we know that

γ =
cp
cv

and a2 =
γp

ρ
.

Thus we get,
Ds

Dt
=
∂s

∂t
+ u

∂s

∂x
= 0 (17)

where
D

Dt
is the substantial derivative defined by equation

D

Dt
=

∂

∂t
+ u

∂

∂x
(18)

Then equations (17) and (14) tell us that the entropy is constant. Comparing equation (14) with

equation (18), we observe that these equations are nearly identical: equation
Ds

Dt
≥ 0 tells that

the substantial derivative of the entropy is greater that or equal to zero where as equation (17)
says that the substantial derivative of the entropy is exactly equal to zero.

The characteristic form that the conservation form of the Euler equation can be written as,

∂u

∂t
+ A

∂u

∂x
= 0 (19)

where

u =
[
ρ ρu ρeT

]
and A =

 0 1 0
γ−3
2
u2 (3− γ)u γ − 1

−γueT + (γ − 1)u3 γeT − 3
2
(γ − 1)u2 γu

 .
Then Q−1A AQA = Λ.

By right and left characteristic vectors associated with the values of Λ we get,

QA =


1

ρ

2a
− ρ

2a
u

ρ

2a
(u+ a) − ρ

2a
(u− a)

u2

2

ρ

2a

(
u2

2
+

a2

γ − 1
+ au

)
− ρ

2a

(
u2

2
+ a2

γ−1 − au
)
 (20)

and Q−1A =
γ − 1

ρa


ρ

a

(
−u

2

2
+

a2

γ − 1

)
ρ

a
u −ρ

a
u2

2
− a2

γ − 1
−u+

a

γ − 1
1

−u
2

2
− a2

γ − 1
u+

a

γ − 1
−1

 .
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Using hT =
1

2
u2 +

1

γ − 1
a2, equation (20) becomes

QA =


1

ρ

2a
− ρ

2a
u

ρ

2a
(u+ a) − ρ

2a
(u− a)

u2

2

ρ

2a
(hT + au) − ρ

2a
(hT − au)

 , (21)

such that dv = Q−1A du = Q−1C dw.

4 Simple waves
Consider a homentropic flow of a perfect gas given by,

p = (constant)ργ,

a = (constant)ρ
(γ − 1)

2

The above expressions can be expressed as
dp

ρa
entirely in terms of a.

In particular, ∫
dp

ρa
=

2a

γ − 1
+ constant, (22)

Using equation (22), equations (14) to(16) becomes

s = constant,

v+ = u+
2a

γ − 1
= constant for dx = (u+ a)dt,

v− = u− 2a

γ − 1
= constant for dx = (u− a)dt.

The characteristic variables v± = u ± 2a

γ − 1
are also known as Riemann invariants, where u

and a are constants along the characteristics dx = (u+ a)dt.

By integrating, we get x = (u+a)t+ constant which shows that the characteristics are straight
lines. Thus we have

• Assuming s = constant and v− = u − 2a

(γ − 1)
= constant then all flow properties are

constant along the characteristic lines

x = (u+ a)t+ constant. (23)

• Assuming s = constant and v+ = u +
2a

(γ − 1)
= constant then all flow properties are

constant along the characteristic lines

x = (u− a)t+ constant. (24)
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• Assuming v− = constant and v+ = constant then all flow properties are constant along
the characteristics lines

x = ut+ constant. (25)

The above three equations are called a simple waves. The flow regions governed by equation
(23) or (24) are called simple acoustic waves and flows governed by equation (25) are called
simple entropy waves.

Equation (23) involves only one variable (u+ a) and it can be written as

∂(u+ a)

∂t
+ (u+ a)

∂(u+ a)

∂x
= 0.

Similarly equation (24) can be expressed as

∂(u− a)

∂t
+ (u− a)

∂(u− a)

∂x
= 0.

Consider the simple entropy waves defined by v+ = constant and v− = constant. If these equa-
tions are added and subtracted we obtain u = constant and a = constant. Hence the velocity
and speed of sound are constant throughout a simple entropy waves.

Then the equation (25) implies
∂s

∂t
+ u

∂s

∂x
= 0. In terms of density we get,

∂ρ

∂t
+ u

∂ρ

∂x
= 0.

5 Expansion waves

An expansion wave decreases pressure and density. An expansion wave in any region for
a one-dimensional flow of perfect gas with wave speed λ2 = u + a and λ3 = u − a increases
monotonically from left to right. More specifically when,

u(x, t) + a(x, t) ≤ u(y, t) + a(y, t), b1(t) ≤ x ≤ y ≤ b2(t),

u(x, t)− a(x, t) ≤ u(y, t)− a(y, t), b1(t) ≤ x ≤ y ≤ b2(t).

Figure 4: Wave diagram for an expansion in the Euler equation

Figure 4 shows the characteristics in the family creating the expansion. Expansion waves
are composed of acoustic and entropy waves which cannot expand and the boundaries b1(t) and
b2(t) are the characteristics. The boundary on high-pressure is called head of the expansion and
the low-pressure is called tail of the expansion.

21



MES Bulletin of Applied Sciences Volume 2, Issue 1, 2019

A simple expansion wave is an expansion wave that is also simple wave which separates
regions of steady uniform flow. A centered expansion fan is an expansion wave in which all
characteristics originate from a single point in the x− t plane which is an expansion wave that
is both simple and centered. The term “fan” is used because it looks like an old-fashioned hand
fan in a wave diagram.

5.1 Derivation of the velocity, speed and pressure in the expansion wave
Assume specific entropy s = constant and suppose a simple fan centered at (x, t) = (0, 0)

connects the two steady uniform flows uL and uR. If u+
2a

γ − 1
= constant then,

u+
2a

γ − 1
= uL +

2aL
γ − 1

= uR +
2aR
γ − 1

. (26)

Using equation (24), equation (26) will be

u+
2

γ − 1

(
u− x

t

)
= uL +

2aL
γ − 1

= uR +
2aR
γ − 1

. (27)

Figure 5: Wave diagram for a simple centered expansion wave in Euler equation

Solving for u and a we get,

u(x, t) =
2

γ + 1

(
x

t
+
γ − 1

2
uL + aL

)
=

2

γ + 1

(
x

t
+
γ − 1

2
uR + aR

)
,

a(x, t) =
2

γ − 1

(
x

t
+
γ − 1

2
uL + aL

)
− x

t
=

2

γ − 1

(
x

t
+
γ − 1

2
uR + aR

)
− x

t

which are the solution for the speed of sound in the expansion.

Figure 6: Pressure for a function of x for a simple centered expansion wave in Euler equation
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Consider the isentropic relations p = (const.)ργ

p = pL

(
a

aL

)2
γ

(γ − 1) = pR

(
a

aR

)2
γ

(γ − 1)

This is the solution for the pressure in the expansion.

6 Rocket propulsion

Figure 6: Robert H. Goddard (1882-1945)

Robert Hutchings Goddard is an Ameri-
can engineer, professor, physicist and inventor
who invented the world’s first liquid fueled
rocket (1926). He and his team launched 34
rockets between 1929 - 1941, achieving al-
titudes as high as 2.6km and speeds as fast
as 885km/h. Goddard’s work in both theorist
and engineer anticipated many of the develop-
ments that were to make spaceflight possible.
A multi-stage rocket (1914) and a liquid-fuel
rocket (1914) are his two important inventions
which were milestones toward spaceflight. His
work in this field was revolutionary but the
public support for his research and develop-
ment work was very less. In 1957, he came to
be recognized as one of the founding fathers
of modern rocketry [4].

In this section we explore some of the issues surrounding the performance of a whole rocket
but have not explored the heart of the rocket, the motors and some of the practical limitations
of motor design. A rocket’s acceleration depends on three main factors namely

• The greater the exhaust velocity of the gases, the greater the acceleration.
• The faster the rocket burns its fuel, the greater its acceleration.
• The smaller the rocket’s mass, the greater the acceleration.

The basic working principle of rocket propulsion is similar to jet propulsion. In rocket propul-
sion, the altitude of rocket engine is very high and the oxygen required for the combustion is
fitted in the tank of the rocket itself. A rocket engine mainly consist of a container for pro-
pellants (fuel and oxidizer), combustion chamber (thrust chamber) and a propulsion nozzle.
Rocket engines provide essentially the highest specific powers and high specific thrusts of any
engine used for spacecraft propulsion.

6.1 Rocket propulsion theory
Some of the main and basic parameters in rocket propulsion are the thrust (F ), specific

impulse (Is), specific propellant consumption(Spc) and exhaust gas velocity or effective jet
velocity(Cj), pressure ratio across the nozzle and area ratio will effect the above quantities.
In energy conservation system, Propulsive efficiency (ηp), thermal efficiency (ηt) and overall
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efficiency (ηo) are important.

The exhaust gases in the jet are produced by the propellant. Therefore, the mass rate of flow
gases is equal to the ratio of flow of propellants.

mp = mf +moxi

Thrust (F ): The force that propels the rocket at a given velocity is known as the thrust which
is produced due to the change in the momentum flux of the outgoing gases as well as differ-
ence between the nozzle exit pressure and the anbient pressure. Rocket thrust is employed to
overcome the drag and gravitational force besides providing the acceleration.

Consider the development control of the thrust in the rocket where there is no inflow of air into
the rocket engine. Let the initial velocity and the final velocity of the gases, before expansion
in the nozzle, be c1 = 0 and c2 = ce respectively. For a one-dimensional steady flow, at the
nozzle exits, the rate of change of momentum flux is given by

Fm = ρec
2
eAe (28)

Continuity equation at the nozzle exits gives

mp = ρeAece (29)

Using equation (28), equation (29) becomes

Fm = mpce

• If the expansion through the nozzle is completely combusted then Pe = Pa
• If the expansion through the nozzle is completely combusted then Pe 6= Pa

The pressure forces acting on the rocket in the direction of motion is given by Ae = Aa, then
we have

Fpr = (Pe − Pa)Ae
Net thrust is given by

F = mpce + (Pe − Pa)Ae (30)

Thrust during the flight through the atmosphere continuously increases with the altitude, an
account of decrease in Pa. Under certain altitude the variation is negligible and thrust is almost
constant, then equation (30) becomes

F = mpce

= mpcj

(
since ce = cj

)
=
wp
g
cj (31)

Specific impulse (Is): Specific impulse of a rocket engine is the thrust per unit weight flow
rate of the propellant defined by

Is =
F

wp
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=
cj
g

(
Using equation (30)

)
where cj depends on the exhaust gas properties.

Specific propellant consumption (Spc): The weight flow rate of the propellant required to
produce a thrust of one Newton is known as the specific propellant consumption and is given

by Spc =
wp
F

=
1

Is
.

Effective speed ratio (σ): The ratio of flight speed to jet velocity is known as effective speed
ratio and defined as σ =

u

cj
.

Propulsive efficiency (ηp): It is defined as the ratio of propulsive power (or thrust power) to

the power output of the engine and denoted as ηp =
2σ

1 + σ2
, where propulsive power = F × u

= mpcj × u, Kinetic energy loss in the exhaust gas =
1

2
(cj − u)2.

Thus, rate of energy or power loss =
1

2
mp(cp− u)2 and power output of the engine =

1

2
mp(c

2
j +

u2)

Thermal efficiency (ηt): It is defined as the ratio of power output of the engine to the power

input to the engine and is given by ηt =
c2j + u2

2QR

, where power input is given by mpQR and QR

is the heat of reaction per kg of products of combustion.

Overall efficiency (ηo): It is defined as the ratio of propulsive power to the power input to the

engine and defined as ηo =
cj × u
QR

.

Example 1: The velocity of a moving rocket is 10, 000 km/hr with u = 2777.7 m/sec, with
an effective exhaust velocity is cj = 1400 m/sec, the propellant flow rate is mp = 5 kg/sec,
the propellant mixture has a heating value of (C.V ) = 6600 kJ/kg. Find propulsion efficiency,
thermal efficiency, overall efficiency and engine output power.

Speed ratio: σ =
u

cj
= 1.984

Thrust: F = mp × cj = 7000

Propulsive power: P = F × u = 19.44× 106 W

Propulsion efficiency: ηp = 80.3%

Thermal efficiency: ηt = 74.24%

Overall efficiency: ηo = 59.6%

Engine output power: = 24.5× 106 W
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7 Results and Discussions
We have studied about the characteristic form of Euler equation, scalar and vector model

problem and its applications. We have learnt about the rocket propulsion and its principle of
working. Hot exhaust is produced in the combustion chamber which is then passed through a
nozzle which accelerates the flow and produces thrust. Efficiency of the rocket propulsion is
obtained by using available experimental data by an example.
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by ideal fluid dynamics and able to predict flow separation. We have studied the steady lam-
inar flow of viscous compressible fluid between two infinite plates separated by a distance
using velocity and temperature distribution. The velocity and temperature distribution for
Von Kármán-Tsiens’s for an insulated plate is plotted in the graphs. We observe that the
effect of the Mach number on the compressible viscous flow is to decrease the velocity gra-
dient at the fixed plate and to increase it at the moving plate.
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1 Introduction

The field of fluid mechanics is essential for understanding of many important aspects of
applied sciences and engineering streams. It is a subject of widespread interest in almost all
fields of engineering as well as biology, meteorology, physical chemistry and geophysics [1].
The development of aeronautical, chemical and mechanical engineering during the past few
decades have given added stimuli to the study of fluid mechanics so that it now ranks as one of
the most important basic subjects in the study of Engineering Sciences [2].

Fluids play an important role in our day today life in its most fundamental form. At the
microscopic level the description of the motion of a fluid involves a study of all the discrete
molecules which make up the fluid. In order to get a computational and fundamental under-
standing of the fluid dynamic problems [3], we must consider the conversational laws in the
sense of continuum aspect theory. From the practical application point of view, Computational
Problems of fluid dynamics leading to the differential equations and its solutions using bound-
ary layer theory by an approximate method is the Kármán Pohlhausen Method based on
the momentum integral equation which is explained in the following sections. Stewartson
has completed the an exhaustive derivation of the complete boundary layer equations govern-
ing general compressible flows [4]. In this study Prandtl’s boundary layer equations for two
dimensional flow of incompressible fluid over a semi-infinite flat plate is encouraged.

2 Prandtl’s boundary layer theory

Prandtl introduced boundary layer theory in 1904 to understand the flow behavior of a vis-
cous fluid near a solid boundary. Prandtl gave the concept of a boundary layer in large Reynolds
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number flows and derived the boundary layer equations by simplifying the Navier Stokes equa-
tions to yield approximate solutions.

Consider laminar two-dimensional flow of fluid of small viscosity over a fixed semi-infinite
plate. It is observed that unlike an ideal fluid flow, The fluid does not slide over the plate, but
“sticks” to it. Since the plate is at rest, The fluid in contact with it will also be at rest. As
we move outwards along the normal, Then velocity of the fluid will gradually increase and at
a distance far from the plate the full stream velocity U is attained. Strictly speaking this is
approached asymptotically. However, It will be assumed that the transition from zero velocity
at the plate to the full magnitude U takes place within a thin layer of fluid in contact with the
plate this is known as the Prandtl boundary layer [5]. Prandtl suggested that the entire field of
flow can be divided for the sake of mathematical analysis, into the following regions.

• A very thin layer (boundary layer) in the vicinity of gradient normal to the wall, i.e.(
∂u

∂y

)
is very large. Accordingly the viscous stress µ

(
∂u

∂y

)
becomes an important

even when µ small thus the viscous and inertial force are of the same order within the
boundary layer.

• In the remaining region (i.e outside the boundary layer)
∂u

∂y
is very small and so the

viscous forces may be ignored completely outside the boundary layer, The flow can be
regarded non-viscous and hence the theory of non-viscous fluids offers a very good ap-
proximation in this region.

Figure 1

3 Importance of Prandtl’s boundary layer theory in fluid dy-
namics

The boundary layer in Figure 1 is thin,it plays a vital role in fluid dynamics. It has become
a very powerful method of analyzing the complex behavior of real fluids. The concept of a
boundary layer can be utilized to simplify the Navier-Stokes equations to such an extent that
it becomes possible to tackle many practical problems of great importance. The drag on ships
and missiles, the efficiency of compressors and turbines in jet engines, The effectiveness of air
intakes and turbojets and so on depend on the concept of the boundary layer and its effects on
the main flow.

While solving any equation and depending on the arguments in physical terms, The bound-
ary layer theory is capable of explaining the difficulties encountered by ideal fluid dynamics.
the boundary layer theory is able to predict flow separation. It can be explained the existence
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of a wake. The pressure distribution produces a net force in the direction in which the stream
flows, here exist a viscous stress on the boundary region and it acts in the direction of flow.

4 Von Karman’s Integral equations to boundary layer
Prandtl’s boundary layer equations for two dimensional flow of incompressible fluid over a

semi-infinite flat plate are given by

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

dp

dx
+ v

∂2u

∂y2
, (1)

∂u

∂x
+
∂v

∂y
= 0, (2)

with boundary conditions

u = v = 0 when y = 0 and u = U(x, t) when y =∞, (3)

we have,
∂U

∂t
+ U

∂U

∂x
= −1

ρ

dp

dx
. (4)

Let δ be the boundary layer thickness, Then u, varies from 0 to u as y varies from 0 to δ.

Let τδ = shearing stress (at y = δ) =

(
µ
∂u

∂y

)
y=δ

.

Since the fluid is regarded as non-viscous outside the boundary layer, τδ = 0 so that
∂u

∂y
= 0

at y = δ hence the boundary conditions may be written as

u = v = 0, when y = 0 and u = U and
∂u

∂y
= 0, when y = δ. (5)

Now, u
∂u

∂x
+ u

∂u

∂y
= u

∂u

∂x
+
∂(uv)

∂y
− u∂v

∂y
= u

∂u

∂x
+
∂(uv)

∂y
− u

(
−∂u
∂x

)
using equation (2).

Thus, u
∂u

∂x
+ v

∂u

∂y
= 2u

∂u

∂y
+
∂(uv)

∂y
or u

∂u

∂x
+ v

∂u

∂y
=
∂u2

∂x
+
∂(uv)

∂y
. (6)

Using equation (6), equation (1) reduces to

∂u

∂t
+
∂u2

∂x
+
∂(uv)

∂y
= −1

ρ

dp

dx
+ v

∂2u

∂y2
. (7)

Integrating equation (7) with respect to y from y = 0 to y = δ, we get

δ∫
0

∂u

∂t
dy +

δ∫
0

∂u2

∂x
dy = |uv|δ0 = −1

ρ

dp

dx

δ∫
0

dy + v

[
∂u

∂y

]δ
0

,

where we have used the fact that
dp

dx
is constant across any section. Re-writing and using the

boundary conditions (5), the above equation reduces to

∂

∂t

δ∫
0

udy +
∂

∂x

δ∫
0

u2dy + Uvδ = −1

ρ

dp

dx
− µ

ρ

(
∂u

∂y

)
0

(8)
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where the suffix δ and 0 signify that the indicated quantities are to be evaluated at y = δ and
y = 0 respectively.
Since,

δ∫
0

∂v

∂y
dy = [uv]δ0 = vδ by using equation (5),

we have

Uvδ = U

δ∫
0

∂v

∂y
dy = U

δ∫
0

∂u

∂x
dy, (using equation (2)) = U

∂

∂x

δ∫
0

udy = U
∂

∂x

δ∫
0

udy. (9)

Also, let τ0 = µ

(
∂u

∂y

)
y=0

= shearing stress at the wall. (10)

Using equations (9) and (10), equation (8) becomes

∂

∂t

δ∫
0

udy +
∂

∂x

δ∫
0

u2dy − U
δ∫

0

∂u

∂x
dy =

δ

ρ

dp

dx
− τ0
ρ
,

∂

∂t

δ∫
0

udy +
∂

∂x

δ∫
0

u2dy − U ∂

∂x

δ∫
0

udy = −δ
ρ

dp

dx
− τ0
ρ
. (11)

This is one of the Von-Kármán’s integral equation.

5 Plane Couette flow of a Compressible Viscous fluid
Consider the steady laminar flow of viscous Compressible fluid between two infinite plates

separated by a distance h. Let the upper plate move with uniform velocity U and the lower plate
be at rest. Let x be the direction of flow, y The direction perpendicular to the flow, And the
width of the plates parallel to the Z-direction. Here the word ‘infinite’ implies that the width
of the plates is large compared with h and hence the flow may be treated as two-dimensional,

i.e.
∂

∂z
= 0 [6].

Figure 2: Configuration of Plane Couette flow of a Compressible viscous fluid
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Let the plates be long enough in the x−direction for the flow to be parallel so that the velocity
components V and W are zero everywhere moreover the flow being steady.

The flow variables are independent of time
(
∂

∂t
= 0

)
. Thus, for the flow under consideration,

we have

~q = (u, v, w), [u = u(y), v = 0, w = 0],
∂

∂z
= 0,

∂

∂t
= 0, (12)

here p is constant.
The basic equations for steady flow of compressible viscous fluid are given by,
Equation of continuity:

∂ρ

∂t
+
∂(ρu)

∂t
+
∂(ρv)

∂t
+
∂(ρw)

∂t
= 0, (13)

Navier Stokes equations [3]:

ρ

{
∂u

∂t
+ u

(
∂u

∂x

)
+ v

(
∂u

∂y

)
+ w

(
∂u

∂z

)}
= ρBx −

∂p

∂x
+

∂

∂x

[
µ

{
2
∂u

∂x

−2

3

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)}]
+

∂

∂y

{
µ

(
∂u

∂y
+
∂v

∂x

)}
+

∂

∂z

{
µ

(
∂w

∂x
+
∂u

∂z

)}
,

(14)

ρ

{
∂v

∂t
+ u

(
∂v

∂x

)
+ v

(
∂v

∂y

)
+ w

(
∂v

∂z

)}
= ρBy −

∂p

∂y
+

∂

∂y

[
µ

{
2
∂v

∂y

−2

3

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)}]
+

∂

∂z

{
U

(
∂v

∂z
+
∂w

∂y

)}
+

∂

∂x

{
µ

(
∂u

∂y
+
∂v

∂x

)}
,

(15)

ρ

{
∂w

∂t
+ u

(
∂w

∂x

)
+ v

(
∂w

∂y

)
+ w

(
∂w

∂z

)}
= ρBz −

∂p

∂z
+

∂

∂z

[
µ

{
2
∂w

∂z

−2

3

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)}]
+

∂

∂x

{
µ

(
∂w

∂x
+
∂u

∂z

)}
+

∂

∂y

{
µ

(
∂v

∂z
+
∂w

∂y

)}
,

(16)

Energy equation:

ρ

{
∂(CpT )

∂t
+ u

∂(CpT )

∂x
+ v

∂(CpT )

∂y
+ w

∂(CpT )

∂z

}
=

∂p

∂t
+ u

∂p

∂x
+ v

∂p

∂y
+ w

∂p

∂z
+

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
+µ

[
2

{(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
}
− 2

3

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)2

+

(
∂u

∂y
+
∂v

∂x

)2

+

(
∂v

∂z
+
∂w

∂y

)2

+

(
∂w

∂x
+
∂u

∂z

)2
]
,

(17)

Equation of state:
P = KρT. (18)

From equation (14) =⇒ d

dy

(
µ
du

dy

)
= 0. (19)

From equation (15) =⇒ d

dy

(
k
dT

dy

)
+ µ

(
du

dy

)2

= 0. (20)
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The boundary conditions are given by

y = 0 : u = 0, T = Tw, Q = Qw

y = h : u = U, T = T∞

}
(21)

where Q denotes heat flux, Qw denotes heat flow to the plate y = 0, Tw and T∞ respectively
denote temperature at moving and stationary plates. Integrating equation (19), we get

µ

(
du

dy

)
= A, (22)

where A is an arbitrary constant. Let shearing stress at the lower plate be given by[
µ

(
du

dy

)]
y=0

= τw, say. (23)

Putting y = 0 in equation (22) and using equation (23), we get A = τw, then equation (22)
becomes

µ

(
du

dy

)
= τw so that du = τw ×

(
dy

µ

)
.

Integrating, we get ∫ u

u=0

du =

y∫
y=0

τw
dy

µ
(or) u = τw

y∫
0

dy

µ
. (24)

Substituting the value of
du

dy
given by equation (23) in equation (20), we get

d

dy

(
k
dT

dy

)
+ µ×

(
τw
µ

)2

= 0,

d

dy

(
k
dT

dy

)
= −τw

2

µ
. (25)

Integrating, we get

k
dT

dy
= −τw2

∫ y

0

dy

µ
+B,

where B being an arbitrary constant,

k

(
dT

dy

)
= −uτw +B, using equation (24), (26)

(
kdT

dy

)
y=0

= −Qw. (27)

The negative sign is conventional, Qw is positive when
(
dT

dy

)
y=0

is negative using the condi-

tions y = 0, u = 0.
Equation (27) =⇒ uτw +B if B = 0. Thus, B = −Qw.

Equation (26) =⇒ k
dT

dy
+ µ

du

dy
= −Qw.

k
dT

dy
= −1

2
µ
du2

dy
−Qw. (28)
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We know that the relationship between the co-efficient of Viscosity µ and the co-efficient of
thermal conductivity k.
It has been shown that with sufficient accuracy µ can be expressed as a power of T in the form

µ

µ∞
=

(
T

T∞

)m
, where 0.5 < m < 1, (29)

where µ∞ is the value of µ at the upper moving plate. For air at ordinary temperature we
usually take m = 0.76. As temperature increases, m decreases towards 0.5.

Prandtl number: Pr =
(Cpµ)

k
. (30)

Since Pr is very nearly constant for all common gases and Cp is also nearly constant for a fairly
wide range of temperatures around ordinary temperature, re-writing equation (30), we get

k =
(Cpµ)

Pr
(31)

Substituting equation (31) in equation (28), we get

Cpµ

Pr

dT

dy
= −µ

2

du2

dy
−Qw,

(or)

d

dy

(
CpT

Pr
+
u2

2

)
= −Qw

µ
. (32)

Integrating, we get

CpT

Pr
+
u2

2
= −Qw

y∫
0

dy

µ
+
C

Pr

where C is an arbitrary constant,

CpT +
1

2
Pru

2 = −QwPr

y∫
0

dy

µ
+ C (33)

Using the boundary conditions at the fixed plate, namely, when y = 0, u = 0 and T = Tw,
equation (33) yields C = CpTw.
Using (24), equation (33) may be re-written as

CpT +
1

2
Pru

2 = −PrQw

τw
u+ C, (34)

which gives relation between u and T .

Determination of velocity and temperature distribution

Using the boundary conditions: When y = h, u = U, T = T∞, equation (34) gives

CpT∞ +
1

2
Pru

2 = −PrQw

τw
u+ c, (35)
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Subtracting equation (34) from equation (33) and simplifying, we obtain

Cp(T − T∞) =
PrQw

τw
(U − u) +

1

2
Pr(U

2 − u2). (36)

Divide equation (36) by CpT∞, we get

T

T∞
= 1 +

PrQwU

CpT∞τw

(
1− u

U

)
+

PrU
2

2CpT∞

(
1− u2

U2

)
(37)

Eckert Number: Ec =
U2

CpT∞
= (γ − 1)M∞

2, (38)

where M∞ denotes the Mach number of the free stream and γ the ratio of specific heats. We
have,

U

CpT∞
= {(γ − 1)M∞

2}/U. (39)

Substituting equation (39) in equation (37) gives

T

T∞
= 1 +

PrQw

τw

(γ − 1)

U
M∞

2
(

1− u

U

)
+ Pr

(γ − 1)

2
M∞

2

(
1− u2

U2

)
. (40)

Using the conditions at the fixed plate namely when y = 0, u = 0 and T = Tw, equation (39)
gives

Tw
T∞

= 1 +
PrQw(γ − 1)M∞

2

τwU
+
Pr(γ − 1)M∞

2

2
.

Thus, Qw =
τwU

PrM∞
2(γ − 1)

{
Tw
T∞
− 1− Pr(γ − 1)M∞

2

2

}
. (41)

The required velocity distribution is given by equation (23) in the form

τwy =

u∫
0

µdu. (42)

Substituting the valueof µ given by equation (29) and the value of T given by equation (41) in
equation (39), we get

τwy

µ∞
=

u∫
0

{
1 +

PrQw(γ − 1)M∞
2

τwU

(
u− u

U

)
+
Pr(γ − 1)M∞

2

2

(
1− u2

U2

)}m
du. (43)

For an arbitrary value of m the integral in equation (42) is evaluated numerically. However, if
m = 1, a simple solution of (42) directly yields

τwy

µ∞U
=
u

U
+
PrQw(γ − 1)M∞

2

τwU

{
u

U
− 1

2

( u
U

)2}
+
Pr(γ − 1)M∞

2

2

{
u

U
− 1

3

( u
U

)3}
.

(44)
Using the boundary condition at the moving plate. namely, when y = h, u = U , equation (43)
reduces to

τw
µ∞

= 1 +
PrQw(γ − 1)M∞

2

2τwU
+
Pr(γ − 1)M∞

2

3
. (45)
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Solving equations (40) and (44), we obtain values of τw and Qw for a chosen value of y, we
obtain u from equation (43). Using the value of u so obtained, we can obtain temperature T ,
we can obtain µ and ρ with the help of equation (37), the pressure p can be obtained using
equation (18).

Adiabatic wall: If the heat transfer at the fixed plate is zero, i.e. if wall is adiabatic, we have
Qw = 0. Then, equation (43) reduces to

τwy

µ∞U
=
u

U
+
Pr(γ − 1)M∞

2

2

{
u

U
− 1

3

( u
U

)3}
. (46)

Using the boundary condition at the moving plate, namely, when y = h, u = U , equation (41)
yields

(τwh)

µ∞U
= 1 +

(
1

3

)
× PrM∞2(γ − 1). (47)

Dividing equation (45) by equation (46), we have

Y

h
=

1

1 + PrM∞
2(γ − 1)/3

[
u

U
+
Pr(γ − 1)M∞

2

2

{
u

U
− 1

3

( u
U

)3}]
. (48)

Let M∞ →∞. Then equation (47) reduces to

Y

h
=

(
3

2

)
×
( u
U

)
×
{

1−
(

1

3

)
×
( u
U

)2}
. (49)

The velocity distribution is plotted against the distance from the fixed plate for various
values of PrM∞2. From the figure 3, we observe that the effect of the Mach number on the
compressible viscous flow is to decrease the velocity gradient at the fixed plate and to increase
it at the moving plate since in the above discussion Prandtl number appears paired with Mach
number, it has the same influence on the velocity distribution as the Mach number. A compar-
ison of the velocity distribution for m = 1 and m = 0.76 has been shown in the Figure 3 with
γ = 1.4.

Typical temperature profiles in compressible viscous flow (PrM∞
2 = 2) for an adiabatic

wall (Qw = 0), a heated wall (Qw < 0), and a cooled wall (Qw > 0) are shown in the Figure
4 taking γ = 1.4. Note that the temperature remains unchanged for an incompressible fluid.
Again the temperature gradient become zero for a compressible viscous flow with adiabatic
wall. This particular temperature at the fixed insulated wall is known as recovery temperature
and is denoted by Tr.

Putting u = 0 and Qw = 0 in equation (39), Tr is given by

Tr
T∞

= 1 + PrM∞
2(γ − 1)/2. (50)

The co-efficient of friction at the fixed wall (Qw = 0) can be obtained from equation (46).
Thus,

Cf =
τw

ρ∞U2/2
=

1 + PrM∞
2(γ − 1)/3

Re/2
, (51)
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where Re = Reynolds number =
Uh

v∞
and v∞ = Kinematic viscosity =

µ∞
ρ∞

. As shown in

Figure 3, the velocity gradient for a compressible viscous fluid varies from the fixed wall to the
moving wall and the shearing stress given by equation (46) is constant.
The constancy of the shearing stress can be proved from the velocity gradient given by

τw = µw

(
du

dy

)
w

= µ∞

(
du

dy

)
∞
. (52)

In order to prove by equation (42), we have

µw
µ∞

=
(du/dy)∞
(du/dy)w

. (53)

The viscosity is given by equation (29) and with the help of equation (39), it may be re-written
as (Qw = 0)

µw
µ∞

=
Tw
T∞

=
1 + PrM∞

2(γ − 1)

2
. (54)

Differentiating equation (45) with respect to y and applying the limits y = 0 and y = h, we
obtain (

du

dy

)
w

=
Tw
µ∞
×+

1

1 + PrM∞
2(γ − 1)/2

,(
du

dy

)
w

=
τw
µ∞

. (55)

The ratio of the velocity gradient in equation (55) is given by

(du/dy)∞
(du/dy)w

= 1 +
PrM∞

2(γ − 1)

2
. (56)

Using equation (56), equation (53) is verified and so the shearing stress is constant in com-
pressible viscous fluid. The increase of the skin-Friction co-efficient at the fixed wall (Qw = 0)
with the increase of the Mach number is illustrated in the Figure 5, taking γ = 1.4.

Figure 3: The velocity distribution against the distance from the fixed plate
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Figure 4: The temperature distribution against the distance from the fixed plate

Figure 5: The skin-friction coefficients at the fixed wall (Qw = 0) against Mach number
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Figure 6: The velocity distribution in the boundary layer

Figure 7: The temperature distribution in the boundary layer
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6 Results and Discussions
The velocity distribution is plotted against the distance from the fixed plate for various

values of PrM2
inf in Figure 3. From the graph in Figure 3 we observe that the effect of Mach

number on the compressible viscous flow is to decrease the velocity gradient at the fixed plate
and to increase at the moving plate. In graph in Figure 4 temperature profiles for an adiabatic
wall (Qw = 0), a heated wall (Qw < 0) and a cooled wall (Qw > 0) is shown. The skin-friction
coefficients are illustrated in graph in Figure 5 and also velocity and temperature distribution
for Von Kármán-Tsiens’s for an insulated plate is given in the graphs in Figures 6 and 7 and
hence the velocity and temperature distributions in boundary layer for different Mach number
is illustrated.
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Application of 3-scale Haar wavelets to elliptic equations
K.P. Sumana1 and P. Kavana2

1,2P. G. Department of Mathematics and Research Centre in Applied Mathematics,
M. E. S. College of Arts, Commerce and Science, 15th cross, Malleswaram, Bengaluru-560003.

Email ID: 1sumana.shesha@gmail.com, 2kavanayadav654@gmail.com

Abstract: Elliptic partial differential equations arise in the mathematical modelling of
many physical phenomena arising in science and engineering. In this paper, we obtain
the numerical solution of Laplace and Poisson equations using 3-scale Haar wavelets.
The basic idea of Haar wavelet collocation method is to convert the partial differential
equation into a system of algebraic equations that involves a finite number of variables.
The numerical results are compared with the exact solution to prove the accuracy of the
Haar wavelet method.
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1 Introduction

A partial differential equation (PDE) is a mathematical equation that involves two or more
independent variables, an unknown functions with respect to the independent variables. All
physical PDEs falls into three main categories namely, Parabolic, Hyperbolic and Elliptic.
PDEs are used to mathematically formulate, and thus aid the solution of physical and other
problems involving functions of several variables, such as the propagation of heat or sound,
fluid flow, elasticity, electrostatics, electrodynamics etc.

In the year 1909, Alfred Haar, a Hungarian mathematician introduced Haar function which
were later known as Haar wavelets. His contribution to wavelets is very evident. There is an
entire wavelet family named after him. The Haar wavelet is a sequence of rescaled “square-
shaped” functions which together form a wavelet family or basis. They consist of piecewise
constant functions and are therefore the simplest orthonormal wavelets with a compact support.
An advantage of these wavelets is the possibility to integrate them analytically for arbitrary
times. They are conceptually simple, fast, memory efficient and exactly reversible [1].

In recent years, the wavelet approach for the solution of differential and integral equations
has become very popular. Multiresolution analysis of wavelets capture local features efficiently
as such enables to detect singularities, shocks, irregular structure and transient phenomena ex-
hibited by the analyzed equations. Chen and Hsiao [2] recommended to expand into the Haar
series the highest order derivatives appearing in the differential equation. This idea has been
very prolific and it is being abundantly applies for the solution of differential equations. The
wavelet coefficients appearing in the Haar series are calculated either using Collocation method
or Galerkin method.

Over the recent decades, wavelets by and large have picked up a respectable status because
of their applications in different disciplines and in that capacity have many success stories.
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Prominent effects of their studies are in the fields of signal processing, computer vision, seis-
mology, turbulence, computer graphics, image processing, structures of the galaxies in the
universe, digital communication, pattern recognition, approximation theory, quantum optics,
biomedical engineering, sampling theory, matrix theory, operator theory, differential equations,
integral equations, numerical analysis, statistics, tomography, and so on. A standout amongst
the best utilizations of wavelets has been in image processing. The Federal Bureau of Investi-
gation (FBI) has build up a wavelet based algorithm for fingerprint compression. Wavelets have
the capability to designate functions at different levels of resolution, which permits building up
a chain of approximate solutions of equations. Compactly supported wavelets are localized in
space, wherein solutions can be refined in regions of sharp variations/transients without going
for new grid generation, which is the common strategy in classical numerical schemes.

Lepik [3] applied Haar wavelets to solve evolution equations. Shi et al. [4] solved wave
equation using Haar wavelets. Ram Jiwari [5] used Haar wavelets to solve Burgers equa-
tion. Hariharan et al. [6, 7, 8, 9, 10] applied Haar wavelets to solve Cahn-Allen Equation,
Fisher’s equation, FitzHugh-Nagumo equation, Klein-Gordon equation, Sine-Gordon equation
and some nonlinear parabolic equations. Dhawan et al. [11] solved heat equation using Haar
wavelets. Lepik [12] used two-dimensional Haar wavelets to solve diffusion equation and
Poisson equation. Wang and Zhao [13] solved two-dimensional Burgers equation using two-
dimensional Haar wavelets. Celik [14, 15] used Haar wavelets to solve magnetohydrodynamic
flow equations and generalized Burgers-Huxley equation.

Bujurke et al. [16] applied wavelet-multigrid method to solve elliptic partial differential
equations. Kumar and Pandit [17] used a composite numerical scheme based on Haar wavelets
for the numerical simulation of coupled Burgers equation. Sumana et al. [18, 19, 20] solved
two-dimensional hyperbolic, parabolic and elliptic PDEs using two-dimensional 2-scale Haar
wavelets. Sumana et al. [21, 22] have also solved two-dimensional Fredholm integral equations
and coupled Fredholm integral equations of second kind using two-dimensional 2-scale Haar
wavelets. Further, Sumana et. al. [23, 24] obtained the numerical solution of non-homogeneous
and non-planar Burgers’ equations by 2-scale Haar wavelet method. Kesava et al. [25] used
2-scale Haar wavelets to determine the numerical solution of initial and boundary value prob-
lems of ordinary differential equation and system of ordinary differential equations.

Kumar et al. [26] solved Fredholm and Volterra integro differential equations and sys-
tems of Fredholm and Volterra integro differential equations numerically using 2-scale Haar
wavelets. Savitha et al. [27] obtained the numerical solution of Volterra integral equation and
system of Volterra integral equations with the aid of 2-scale Haar wavelets. Tejuswini et al.
[28] applied 2-scale Haar wavelets to determine the numerical solution of one-dimensional
parabolic PDEs. Mittal and Pandit [29] developed 3-scale Haar wavelets and used it to obtain
the numerical solution of planar and non-planar Burgers’ equations. Manjunath et al. [30]
analyzed the numerical solution of initial and boundary value problems of ordinary differential
equations with the help of 3-scale Haar wavelets. Recently, Sumana et al. [31] used 2-scale
Haar wavelets to determine the solution of time-delayed Burgers’ equations numerically.

In this paper, some elliptic partial differential equations are solved using two-dimensional
3-scale Haar wavelets.
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2 Haar Wavelet

The 3-scale Haar wavelets [29] for x ∈ [0, 1] is defined as follows,

hi(x) =

ψ
1
i (x) for even i,

ψ2
i (x) for odd i,

(1)

where

ψ1
i (x) =

1√
2



−1 for ξ1 ≤ x ≤ ξ2,

2 for ξ2 ≤ x ≤ ξ3,

−1 for ξ3 ≤ x ≤ ξ4,

0 elsewhere,

(2)

ψ2
i (x) =

√
3

2



1 for ξ1 ≤ x ≤ ξ2,

0 for ξ2 ≤ x ≤ ξ3,

−1 for ξ3 ≤ x ≤ ξ4,

0 elsewhere,

(3)

ξ1 =
k

m
, ξ2 =

k + 1
3

m
, ξ3 =

k + 2
3

m
, ξ4 =

k + 1

m
. (4)

In the above definition m = 3j , j = 0, 1, . . . , J indicates the level of the wavelet; k =
0, 1, . . .m − 1 is the translation parameter. J is the maximum level of resolution. For index
i = 1, h1(x) is assumed to be the scaling function which is defined as follows.

h1(x) =

1 for x ∈ [0, 1)

0 elsewhere
(5)

For index i > 1, even and odd index are calculated from the formula i = m + 2k + 1 and
i = m+ 2k + 2 respectively.

In order solve differential equations of any order, we need the following integrals.

pi(x) =

x∫
0

hi(x)dx =


θ1i (x) =

x∫
0

ψ1
i (x)dx for even i,

θ2i (x) =
x∫
0

ψ2
i (x)dx for odd i,

(6)

where

θ1i (x) =
1√
2



ξ1 − x for ξ1 ≤ x ≤ ξ2,

2x− 3ξ2 + ξ1 for ξ2 ≤ x ≤ ξ3,

ξ1 − 3ξ2 + 3ξ3 − x for ξ3 ≤ x ≤ ξ4,

0 elsewhere,

(7)
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θ2i (x) =

√
3

2



x− ξ1 for ξ1 ≤ x ≤ ξ2,

ξ2 − ξ1 for ξ2 ≤ x ≤ ξ3,

ξ3 + ξ2 − ξ−x for ξ3 ≤ x ≤ ξ4,

0 elsewhere.

(8)

qi(x) =

x∫
0

pi(x)dx =


ζ1(x) =

x∫
0

θ1i (x)dx for even i,

ζ2(x) =
x∫
0

θ2i (x)dx for odd i,
(9)

where

ζ1i (x) =
1

2
√

2



−(ξ1 − x)2 forξ1 ≤ x ≤ ξ2,

2(x− 2ξ2 + ξ1)(x− ξ2)− (ξ1 − ξ2)2 for ξ2 ≤ x ≤ ξ3,

(3ξ3 − 2ξ2 − x)(x− ξ3)− (ξ1 − ξ2)2 for ξ3 ≤ x ≤ ξ4,

0 elsewhere,

(10)

ζ2i (x) =
1

2

√
3

2



(x− ξ1)2 for ξ1 ≤ x ≤ ξ2,

(ξ2 − ξ1)(2x− ξ2 − ξ1) for ξ2 ≤ x ≤ ξ3,

(x− ξ3)(ξ3 + 2ξ2 − 2ξ1 − x)

+ (ξ2 − ξ1)(2ξ3 − ξ2 − ξ1)
for ξ3 ≤ x ≤ ξ4,

(ξ4 − ξ3)(ξ3 + 2ξ2 − 2ξ1 − ξ4)
+ (ξ2 − ξ1)(2ξ3 − ξ2 − ξ1)

for ξ4 ≤ x ≤ 1,

0 elsewhere.

(11)

The Haar wavelets (1)-(5) and its integrals (6)-(11) for i = 1, 2, . . . , 9 are presented in Figures
1-3.

2.1 Function approximation
Any function g(x, y) which is square integrable on [0, 1)× [0, 1) can be expressed as an infinite
sum of Haar wavelets as

g(x, y) =
∞∑
i=1

∞∑
j=1

bijhi(x)hj(y), (12)

bij =

∫ 1

0

∫ 1

0

g(x, y)hi(x)hj(y)dx dy. (13)

If g(x, y) is approximated as piecewise constant in each sub-area, then equation (12) will be
terminated at finite terms, i.e.

g(x, y) =

3M1∑
i=1

3M2∑
j=1

bijhi(x)hj(y), (14)

where the wavelet coefficients bij, i = 1, 2, . . . , 3M1, j = 1, 2, . . . , 3M2 are to be determined.
Here M1 = 3J1 and M2 = 3J2 , and J1, J2 are the maximum levels of the resolution of the
wavelet.
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Figure 1: hi(x) for i = 1, 2, . . . , 9

Figure 2: pi(x) for i = 1, 2, . . . , 9
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Figure 3: qi(x) for i = 1, 2, . . . , 9

3 Method of Solution

In this section, the description of the Haar wavelet collocation method (HWCM) to solve
two-dimensional elliptic PDEs is outlined.

3.1 Laplace Equation
Consider the Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (15)

with boundary conditions
u(x, 0) = f1(x), 0 ≤ x ≤ 1, (16)

u(x, 1) = f2(x), 0 ≤ x ≤ 1, (17)

u(0, y) = g1(y), 0 ≤ y ≤ 1, (18)

u(1, y) = g2(y), 0 ≤ y ≤ 1. (19)

The order of the PDE (15) is 2 w.r.t. x and 2 w.r.t. y. Therefore the Haar wavelet solution is
assumed to be in the form

uxxyy(x, y) =

3M1∑
i=1

3M2∑
j=1

a(i, j)hi(x)hj(y). (20)
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Integrating equation (20) twice w.r.t y in the limits [0, y] and using equation (16) gives

uxx(x, y) =

3M1∑
i=1

3M2∑
j=1

a(i, j)hi(x)qj(y) + yuxxy(x, 0) + f ′′1 (x). (21)

Putting y = 1 in equation (21) and using equation (17) leads to

uxxy(x, 0) = −
3M1∑
i=1

3M2∑
j=1

a(i, j)hi(x)qj(1) + f2′′(x)− f ′′1 (x). (22)

Substituting equation (22) in equation (21), we obtain

uxx(x, y) =

3M1∑
i=1

3M2∑
j=1

a(i, j)hi(x)[qj(y)− yqj(1)] + yf ′′2 (x) + (1− y)f ′′1 (x). (23)

Integrating equation (20) twice w.r.t. x in the limits [0, x] and using equation (18), we arrive at

uyy(x, y) =

3M1∑
i=1

3M2∑
j=1

a(i, j)qi(x)hj(y) + xuxxy(0, y) + g′′1(y). (24)

Putting x = 1 in equation (24) and using (19), we have

uxyy(0, y) = −
3M1∑
i=1

3M2∑
j=1

a(i, j)qi(1)hj(y) + g′′2(y)− g′′1(y). (25)

Substituting equation (25) in equation (24), we get

uyy(x, y) =

3M1∑
i=1

3M2∑
j=1

a(i, j)[qi(x)− xqi(1)]hj(y) + xg′′2(y) + (1− x)g′′1(y). (26)

Integrating equation (23) twice w.r.t. x in the limits [0, x] and using equation (18), gives

u(x, y) =

3M1∑
i=1

3M2∑
j=1

a(i, j)qi(x)[qj(y)− yqj(1)] + xux(0, y) + g1(y) + yf2(x)

+ (1− y)f1(x)− y[f2(0) + xf ′2(0)]− (1− y)[f1(0) + xf ′1(0)].

(27)

Putting x = 1 in equation (27) and using equation (19) leads to

ux(0, y) =−
3M1∑
i=1

3M2∑
j=1

a(i, j)qi(1)[qj(y)− yqj(1)] + g2(y)− g1(y)

+ y[f2(0) + f ′2(0)− f ′2(1)]− (1− y)[f1(0) + xf ′1(0)− f ′1(1)].

(28)

Substituting equation (28) in equation (27), we obtain

u(x, y) =

3M1∑
i=1

3M2∑
j=1

a(i, j)[qi(x)− xqi(1)] + xg2(y) + (1− x)g1(y) + yf2(x)

+ (1− y)f1(x)− xyf2(1)− x(1− y)f1(1)− (1− x)yf2(0)

− (1− x)(1− y)f1(0).

(29)
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The wavelet collocation points are defined as

xl =
l − 0.5

3M1

, l = 1, 2, 3, . . . , 3M1, (30)

yn =
n− 0.5

3M2

, n = 1, 2, 3, . . . , 3M2, (31)

Substituting equations (23) and (26) in equation (15), and taking x → xl and y → yn in the
resultant equations and equation (29), we get

2M1∑
i=1

2M2∑
j=1

a(i, j)A(i, j, l, n) = φ(xl, yn), (32)

where
A(i, j, l, n) = hi(xl)[qj(yn)− ynqj(1)] + [qi(xl)− xlqi(1)]hj(yn), (33)

φ(xl, yn) = (yn − 1)f ′′1 (xl)− ynf ′′2 (xl) + (xl − 1)g′′1(yn)− xlg′′2(yn), (34)

u(xl, yn) =

2M1∑
i=1

2M2∑
j=1

a(i, j)[qi(xl)− xlqi(1)][qj(yn)− ynqj(1)] + xlg2(yn)

+ (1− xl)g1(yn) + ynf2(xl) + (1− yn)f1(xl)− xlynf2(1)

− xl(1− yn)f1(1)− (1− xl)ynf2(0)− (1− xl)(1− yn)f1(0).

(35)

In order to calculate the wavelet coefficients a(i, j) from equation (32), we must transform the
system into a form containing only two-order matrices as there are no algorithms to deal with
fourth-order matrices. We define new indices,

α = 3M1(i− 1) + j, β = 3M2(l − 1) + n. (36)

We rewrite the equation (32) in the form

3M1∑
i=1

3M2∑
j=1

b(α)R(α, β) = ψ(β), (37)

where b(α) → a(i, j), ψ(β) → φ(xl, yn) and R(α, β) → A(i, j, l, n). Now b and ψ are 3M1 ∗
3M2 dimensional row vectors andR is a (3M1)

2∗(3M2)
2 dimensional matrix. We first evaluate

b(α) from equation (37) and then re-establish the wavelet coefficients a(i, j) using (36).

α

3M1

= i− 1 +
l

3M1

,
β

3M2

= i− 1 +
n

3M2

. (38)

The integer part of equation (38) gives i − 1 and l − 1, and the remainders are j and n. In
this way, the wavelet coefficients a(i, j); i = 1, 2, . . . 3M1, j = 1, 2, . . . 3M2 can be calculated
from equation (32). These coefficients are then substituted in equation (35) to obtain the Haar
wavelet solution at the collocation points xl, l = 1, 2, . . . 3M1, yn, n = 1, 2, . . . 3M2.

The Laplace equation and Poisson equation have the highest order of the derivative w.r.t.
x and y as 2 and 2 respectively. Therefore, the Haar wavelet method outlined in (20)-(29) is
common to both the equations.
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3.2 Poisson Equation
Consider the Poisson equation

∂2u

∂x2
+
∂2u

∂y2
= F (x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (39)

with boundary conditions
u(x, 0) = f1(x), 0 ≤ x ≤ 1, (40)

u(x, 1) = f2(x), 0 ≤ x ≤ 1, (41)

u(0, y) = g1(y), 0 ≤ y ≤ 1, (42)

u(1, y) = g2(y), 0 ≤ y ≤ 1, (43)

where F (x, y) is the inhomogeneous term.

Substituting equations (23) and (26) in equation (39), and taking x → xl and y → yn in the
resultant equations, we get

2M1∑
i=1

2M2∑
j=1

a(i, j)A(i, j, l, n) = φ(xl, yn), (44)

where
A(i, j, l, n) = hi(xl)[qj(yn)− ynqj(1)] + [qi(xl)− xlqi(1)]hj(yn), (45)

φ(xl, yn) = (yn − 1)f ′′1 (xl)− ynf ′′2 (xl) + (xl − 1)g′′1(yn)− xlg′′2(yn), (46)

In order to calculate the approximate solution of the Poisson equation (39), the wavelet coeffi-
cients a(i, j), i = 1, 2, . . . , 3M1, j = 1, 2, . . . , 3M2 computed from equation (44) are substi-
tuted in equation (35).

Error Estimate: We define the error estimate at t = ts by

ν(ts) =
1

3M1

1

3M2

‖u(x, y, ts)− uex(x, y, ts)‖ , (47)

where uex(x, y, ts) is the exact solution at t = ts.

4 Examples and Discussions
In this section, two examples each of Laplace equation and Poisson equation are discussed.

Lagrange bivariate interpolation is used to determine the solution at the specified points. The
entire computational work is done using MATLAB.

Example 1:

Consider the two-dimensional Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (48)
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subject to the boundary conditions

u(x, 0) = 0, 0 ≤ x ≤ 1, (49)

u(x, 1) = sin(πx), 0 ≤ x ≤ 1, (50)

u(0, y) = 0, 0 ≤ y ≤ 1, (51)

u(1, y) = 0, 0 ≤ y ≤ 1. (52)

The exact solution is

u(x, y) =
sin(πx) sinh(πy)

sinh(π)
. (53)

The HWCM solution of this example with J1 = J2 = 2 is given in Table 1. The results are
compared with the exact solution and are found to be in good agreement. Figure 4 shows the
comparison of the HWCM solution with the exact solution. The error estimates obtained for
different J1, J2 are given in Table 2.

Example 2:

Consider the two-dimensional Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0, 1 ≤ x ≤ 2, 0 ≤ y ≤ 1, (54)

subject to the boundary conditions

u(x, 0) = 2 log(x), 1 ≤ x ≤ 2, (55)

u(x, 1) = log(x2 + 1), 1 ≤ x ≤ 2, (56)

u(0, y) = log(y2 + 1), 0 ≤ y ≤ 1, (57)

u(1, y) = log(y2 + 4), 0 ≤ y ≤ 1. (58)

The exact solution is
u(x, y) = log(x2 + y2). (59)

The HWCM solution of this example with J1 = J2 = 2 is given in Table 3. The results are
compared with the exact solution and are found to be in good agreement. Figure 5 shows the
comparison of the HWCM solution with the exact solution. The error estimates obtained for
different J1, J2 are given in Table 4.

Example 3:

Consider the two-dimensional Poisson equation

∂2u

∂x2
+
∂2u

∂y2
= (x2 + y2), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (60)

subject to the boundary conditions

u(x, 0) = 1, 0 ≤ x ≤ 1, (61)

u(x, 1) = ex, 0 ≤ x ≤ 1, (62)
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u(0, y) = 1, 0 ≤ y ≤ 1, (63)

u(1, y) = ey, 0 ≤ y ≤ 1. (64)

The exact solution is
u(x, y) = exy. (65)

The HWCM solution of this example with J1 = J2 = 2 is given in Table 5. The results are
compared with the exact solution and are found to be in good agreement. Figure 6 shows the
comparison of the HWCM solution with the exact solution. The error estimates obtained for
different J1, J2 are given in Table 6.

Example 4:

Consider the two-dimensional Poisson equation

∂2u

∂x2
+
∂2u

∂y2
=
x

y
+
y

x
, 1 ≤ x ≤ 2, 1 ≤ y ≤ 2, (66)

subject to the boundary conditions

u(x, 0) = x log(x), 1 ≤ x ≤ 2, (67)

u(x, 1) = x log(4x2), 1 ≤ x ≤ 2, (68)

u(0, y) = y log(y), 1 ≤ y ≤ 2, (69)

u(1, y) = y log(4y2), 1 ≤ y ≤ 2. (70)

The exact solution is
u(x, y) = xy log(xy). (71)

The HWCM solution of this example with J1 = J2 = 2 is given in Table 7. The results are
compared with the exact solution and are found to be in good agreement. Figure 7 shows the
comparison of the HWCM solution with the exact solution. The error estimates obtained for
different J1, J2 are given in Table 8.

5 Conclusion
In this paper, an efficient numerical scheme based on uniform 3-scale Haar wavelets is used

to solve elliptic partial differential equations, namely, two-dimensional Laplace and Poisson
equations. The numerical scheme is tested for four examples. The obtained numerical results
are compared with the exact solutions. We observe that the error values are negligibly small
which indicate that the HWCM solution is very close to the exact solution. Thus the 3-scale
Haar wavelet method guarantees the necessary accuracy with a small number of grid points and
a wide class of PDEs can be solved using this approach. This method takes care of boundary
conditions automatically and hence it is the most convenient method for solving boundary value
problems. This method can also be used to solve nonlinear PDEs.
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Table 1: Comparison of the HWCM solution and exact solution of Example 1

(x, y)
u(x, y)

(x, y)
u(x, y)

HWCM Exact HCWM Exact
(0.1,0.2) 0.0179784384 0.0179405685 (0.5,0.6) 0.2785441683 0.2785683338
(0.1,0.4) 0.0432409941 0.0431998876 (0.5,0.8) 0.5307515912 0.5309792250
(0.1,0.6) 0.0860748486 0.0860823492 (0.7,0.2) 0.0470681808 0.0469690182
(0.1,0.8) 0.1640111984 0.1640816042 (0.7,0.4) 0.1132064354 0.1130987739
(0.3,0.2) 0.0470681808 0.0469690182 (0.7,0.6) 0.2253469651 0.2253665161
(0.3,0.4) 0.1132064354 0.1130987739 (0.7,0.8) 0.4293870555 0.4295712167
(0.3,0.6) 0.2253469651 0.2253665161 (0.9,0.2) 0.0179784384 0.0179405685
(0.3,0.8) 0.4293870555 0.4295712167 (0.9,0.4) 0.0432409941 0.0431998876
(0.5,0.2) 0.0581794712 0.0580568993 (0.9,0.6) 0.0860748486 0.0860823492
(0.5,0.4) 0.1399308501 0.1397977728 (0.9,0.8) 0.1640111984 0.1640816042

Table 2: Error in the solution of Example 1

J1 J2
ν(t)

L2 L∞
1 1 1.0247E-05 1.2877E-05
2 2 4.4110E-07 5.3499E-07
3 3 1.6605E-08 2.0086E-08

Table 3: Comparison of the HWCM solution and exact solution of Example 2

(x, y)
u(x, y)

(x, y)
u(x, y)

HWCM Exact HCWM Exact
(0.1,0.2) 0.2231332932 0.2231435513 (0.5 ,0.6 ) 0.9593639941 0.9593502213

(0.1 ,0.4 ) 0.3148025321 0.3148107398 (0.5 ,0.8 ) 1.0612695990 1.0612565021
(0.1 ,0.6 ) 0.4510703158 0.4510756194 (0.7 ,0.2 ) 1.0749916546 1.0750024230
(0.1 ,0.8 ) 0.6151830671 0.6151856391 (0.7 ,0.4 ) 1.1151437271 1.1151415906
(0.3 ,0.2 ) 0.5481025156 0.5481214085 (0.7 ,0.6 ) 1.1786684372 1.1786549963
(0.3 ,0.4 ) 0.6151785570 0.6151856391 (0.7 ,0.8 ) 1.2613100773 1.2612978709
(0.3 ,0.6 ) 0.7178435591 0.7178397932 (0.9 ,0.2 ) 1.2947236233 1.2947271676
(0.3 ,0.8 ) 0.8458736204 0.8458682676 (0.9 ,0.4 ) 1.3270762163 1.3270750015
(0.5 ,0.2 ) 0.8285349823 0.8285518176 (0.9 ,0.6 ) 1.3787714780 1.3787660947
(0.5 ,0.4 ) 0.8796261923 0.8796267475 (0.9 ,0.8 ) 1.4469238034 1.4469189829

Table 4: Error in the solution of Example 2

J1 J2
ν(t)

L2 L∞
1 1 8.4940E-07 1.1409E-06
2 2 3.4791E-08 4.6102E-08
3 3 1.3030E-09 1.7234E-09
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Table 5: Comparison of the HWCM solution and exact solution of Example 3

(x, y)
u(x, y)

(x, y)
u(x, y)

HWCM Exact HCWM Exact
(0.1 ,0.2 ) 1.0202091485 1.0202013400 (0.5 ,0.6 ) 1.3499088159 1.3498588076
(0.1 ,0.4 ) 1.0408238381 1.0408107742 (0.5 ,0.8 ) 1.4918611920 1.4918246976
(0.1 ,0.6 ) 1.0618510247 1.0618365465 (0.7 ,0.2 ) 1.1502986725 1.1502737989
(0.1 ,0.8 ) 1.0832974860 1.0832870677 (0.7 ,0.4 ) 1.3231714017 1.3231298123
(0.3 ,0.2 ) 1.0618569566 1.0618365465 (0.7 ,0.6 ) 1.5220084826 1.5219615556
(0.3 ,0.4 ) 1.1275308401 1.1274968516 (0.7 ,0.8 ) 1.7507074836 1.7506725003
(0.3 ,0.6 ) 1.1972549731 1.1972173631 (0.9 ,0.2 ) 1.1972284352 1.1972173631
(0.3 ,0.8 ) 1.2712762642 1.2712491503 (0.9 ,0.4 ) 1.4333480852 1.4333294146
(0.5 ,0.2 ) 1.1051979068 1.1051709181 (0.9 ,0.6 ) 1.7160283138 1.7160068622
(0.5 ,0.4 ) 1.2214476803 1.2214027582 (0.9 ,0.8 ) 2.0544496553 2.0544332106

Table 6: Error in the solution of Example 3

J1 J2
ν(t)

L2 L∞
1 1 2.9651E-06 3.7196E-06
2 2 1.1237E-07 1.4133E-07
3 3 4.1726E-09 5.24492E-09

Table 7: Comparison of the HWCM solution and exact solution of Example 4

(x, y)
u(x, y)

(x, y)
u(x, y)

HWCM Exact HCWM Exact
(0.1 ,0.2 ) 0.3664739017 0.3664738923 (0.5 ,0.6 ) 2.1011249698 2.1011249696
(0.1 ,0.4 ) 0.6649449341 0.6649449213 (0.5 ,0.8 ) 2.6817797888 2.6817797871
(0.1 ,0.6 ) 0.9949523188 0.9949523039 (0.7 ,0.2 ) 1.4544176050 1.4544176080
(0.1 ,0.8 ) 1.3525317704 1.3525317525 (0.7 ,0.4 ) 2.0636991601 2.0636991607
(0.3 ,0.2 ) 0.6937098796 0.6937098812 (0.7 ,0.6 ) 2.7217187141 2.7217187144
(0.3 ,0.4 ) 1.0898824324 1.0898824320 (0.7 ,0.8 ) 3.4223496442 3.4223496429
(0.3 ,0.6 ) 1.5233252197 1.5233252189 (0.9 ,0.2 ) 1.8791199998 1.8791200100
(0.3 ,0.8 ) 1.9893531769 1.9893531747 (0.9 ,0.4 ) 2.6023474780 2.6023474866
(0.5 ,0.2 ) 1.0580159945 1.0580159968 (0.9 ,0.6 ) 3.3800468375 3.3800468469
(0.5 ,0.4 ) 1.5580684238 1.5580684239 (0.9 ,0.8 ) 4.2053706760 4.2053706847

Table 8: Error in the solution of Example 4

J1 J2
ν(t)

L2 L∞
1 1 2.4892E-17 4.9343E-17
2 2 9.6869E-18 2.4671E-17
3 3 2.3485E-18 8.4269E-18
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Figure 4: Comparison of the HWCM solution and exact solution of Example 1

Figure 5: Comparison of the HWCM solution and exact solution of Example 2

Figure 6: Comparison of the HWCM solution and exact solution of Example 3
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Figure 7: Comparison of the HWCM solution and exact solution of Example 4
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1 Introduction

Magnetic fluids are also known as Ferrofluids and are special category of smart nano ma-
terials, in particular they are magnetically controllable nano fluids. Ferrofluid was invented
in 1963 by NASA’s Steven Papell as liquid rocket fuel that could be drawn towards a pump
inlet in a weightless environment by applying magnetic field. This types of nanofluids are
colloids of magnetic nano particles, such as Fe3o4, Co, Fe etc, Stably dispersed in a carrier
liquid. Consequently, these nano materials manifest simultaneously fluid and magnetic proper-
ties. Macroscopically, the introduction of magnetic force into the fundamental hydrodynamic
equation for the quasihomogeneous magnetisable liquid medium gives rise to the magnetohy-
drodynamics of magnetic nanofluids (Ferrofluids).

Some art and science museums have special devices on display that use magnets to make
magnetic fluids move around specially shaped surfaces in a fountain show-like fashion to en-
tering guests. Sachiko Kodama is known for her magnetic fluid art. The Australian electronic
rock band Pendulum used magnetic fluid for the music video for track, Watercolour. The design
house Krafted London was responsible for the magnetic fluid FX in the video. The post-metal
band lsis also used a magnetic fluid in the music-video for 20 minutes/40 years. Martin Frey, a
German designer and technologist, built the pixel-based ferrofluid display Sn Oil in 2005. The
device consists of a 12× 12 matrix of electromagnetics, allowing the apparatus to display text
and run simple games.

Magnetic fluids have been proposed for magnetic drug targetting. In this process the drugs
would be attached to or enclosed within a magnetic fluid and could be targeted and selectively
released using magnetic fields. They are used as “Tag and Drag” removal of toxins. It has also
been proposed for targeted magnetic hyperthermia to convert electromagnetic energy into heat.
It has also been proposed in a form of nano-surgery to separate one tissue from another for
example a tumour from the tissue in which it has grown [1].

Verma [2] showed that the non linearities of the governing equations of the ferrofluids will
cancel for constant Laplacian and vorticity on stream lines. They found an angle between the
magnetization and the applied magnetic field and determined the exact solution. Achala et al.
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[3] examined both polar and nonpolar ferrofluid between two parallel plates. They found the
velocity and shear stress for both polar and nonpolar ferrofluid and obtained the solution of the
spin velocity of polar fluid.

2 Geometry and Governing equations
Consider a steady laminar flow of an incompressible viscous fluid between two parallel

rigid plates separated by a distance h due to the moment of the upper plate with uniform veloc-
ity Ui while the lower plate is stationary and constant pressure gradient Such a flow is called
Generalized plane Couette flow. Let x be the direction of the flow, z be the direction perpen-
dicular to the flow.

z = 0

z = h

x

y

z

Figure 1: Geometry of the flow

Let the velocity of the flow is given by

~q = U(x.y, z)i, v = 0, w = 0. (1)

From the continuity equation we have

∇ · ~q = 0,
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

(2)

since u is independent of x
∂u

∂x
= 0. (3)

The flow is extending to infinity in the y direction, the variation in this direction are neglected

∂u

∂y
= 0, (4)

therefore u is independent of y, hence

~q = u(z)i. (5)

The Navier-Stokes equation [4, 5] is given by,

ρ

[
∂~q

∂t
+ (~q · ∇)~q

]
= ρ~g −∇P + µ0( ~M · ∇) ~H + µ∇2~q. (6)

For Irrotational flow we have
∇× ~q = 0, ~q = −∇φ. (7)
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Maxwell’s equations [4, 5, 6] are given by

∇ · ~B = 0, ~B = µ0( ~H + ~M). (8)

We have Magnetization[4, 5, 7] equation for ferrofluid as

~M = µ ~H. (9)

Since the flow is steady we have
∂~q

∂t
= 0. (10)

Consider

(~q · ∇)~q =

(
u(z)

∂

∂x

)
)u(z) = 0. (11)

Since the body forces are absent we have

~g = 0. (12)

Consider

∇2~q =

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
,

using equations (2) and (4) we get

∇2~q =
∂2u

∂z2
=
d2u

dz2
î, (13)

Let
~M = (Mx,My,Mz), ~H = (Hx, Hy, HZ), (14)

consider

( ~M · ∇) ~H =

[
(Mx,My,Mz) ·

(
∂

∂x
î,
∂

∂x
ĵ,

∂

∂x
k̂

)]
(Hx, Hy, Hz),

( ~M · ∇) ~H =

(
Mx

∂Hx

∂x
+Mz

∂Hx

∂z

)
î+

(
Mx

∂Hx

∂x
+Mz

∂Hx

∂z

)
k̂,

(15)

substituting equation (15) in equation (6) we get

− ∂p

∂x
+ µ

(
∂2u

∂z2

)
î+ µ0

(
Mx

∂Hx

∂x
+Mz

∂Hx

∂z

)
î = 0, (16)

− ∂p

∂x
+ µ0

(
Mx

∂Hx

∂x
+
∂Hx

∂z

)
k̂ = 0. (17)

and from equations (7) and (8) we have,

Hx = −∂φ
∂x
, Hy = −∂φ

∂z
, H2 = H2

x +H2
y , (18)

Mx = µHx My = µHx Mz = µHz. (19)
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Consider

Mx
∂Hx

∂x
+Mz

∂Hx

∂z
= µ

(
∂φ

∂x

∂2φ

∂x2
+
∂φ

∂z

∂2φ

∂x∂z

)
,

=
µ

2

∂

∂x

[(
∂φ

∂x

)2

+

(
∂φ

∂z

)2
]
,

=
µ

2

∂

∂x
(H2

x +H2
y ),

Mx
∂Hx

∂x
+Mz

∂Hx

∂z
=
µ

2

∂H2

∂x
.

(20)

Now consider

Mx
∂Hz

∂x
+Mz

∂Hz

∂z
= µ

(
∂φ

∂x

∂2φ

∂x∂z
+
∂φ

∂z

∂2φ

∂x2

)
,

=
µ

2

∂

∂z

[(
∂φ

∂x

)2

+

(
∂φ

∂z

)2
]
,

=
µ

2

∂

∂z
(H2

x +H2
y )

Mx
∂Hz

∂x
+Mz

∂Hz

∂z
=
µ

2

∂H2

∂z
.

(21)

Nomenclature: ~q is the velocity of the fluid, ρ is the density of the fluid, ~g is the gravitation,
P is the pressure, ~M is the magnetization, ~H is the magnetic field intensity, µ0 is the perme-
ability of free space, µ̄ is the magnetic susceptibility, η is the coefficient of viscosity of the
fluid.

3 Method of Solution
Substituting equations (20) and (21) in equations (16) and (17) we get

µ
∂2u

∂z2
− ∂

∂x

(
p− µµ0H

2

2

)
= 0. (22)

∂

∂z

(
p− µµ0H

2

2

)
= 0. (23)

Equation (22) can be written as

µ
∂2u

∂z2
− A = 0, (24)

where

A =
∂

∂x

(
p− µµ0H

2

2

)
Integrating the equation (24) we get

µ
∂u

∂z
− Az = C,

u =
1

µ

[
Az2

2
+ Cz +D

]
,

(25)

where C and D are constants to be determined.
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Boundary Conditions:
Since the fluid is viscous and the upper rigid plate is moving with constant speed U while

the lower rigid plate is stationary.
The no slip condition suggests that

u = 0 at z = 0, (26)

u = U at z = h, (27)

using equations (26) and (27) in equation (25) we get

D = 0,

C =
U

h
−
(
Ah

2µ

)
,

(28)

therefore equation (25) becomes

u

U
=
z

h
− Ah2

2µU

(
z

h
− z2

h2

)
,

u∗ = z∗ − Ah2

2µU
(z∗ − z∗2),

(29)

where u∗ =
u

U
is the non dimensional velocity and

z∗ =
z

h
is the non dimensional vertical length.

Neglecting the asterisks (*) for simplicity we get

u = z +Gz(1− z), (30)

where G = −Ah
2

2µU
. Hence equation (30) is the velocity distribution for Generalized plane

Couette flow.

3.1 Maximum Velocity

Differentiating equation (30) w.r.t z and equating to zero we get

z =
G+ 1

2G
, (31)

also,
∂2u

∂z2
= −2G ≤ 0, (32)

where G ≥ 0. The maximum velocity is given by,

Umax =
G+ 1

2G
+G

(
G+ 1

2G

)(
1− G+ 1

2G

)
,

Umax =
(G+ 1)2

4G
,

(33)
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3.2 Average Velocity

The average velocity is denoted by U is defined as the ratio of the total flow over a cross
section to the area of the cross section and it is given by

u =
1

h

∫ h

0

udz,

u =
1

h

∫ h

0

u∗Uhdz∗,

u∗ =

∫ h

0

u∗dz∗,

(34)

where u∗ =
u

U
, is the non dimensional average velocity.

Neglecting the asterisks (*) for simplicity and simplifying we get

u =

∫ 1

0

udz,

=

∫ 1

0

[z +Gz(1− z)]dz,

u =

({
− ∂

∂x

(
p− µ0µH

2

2

)
h2

2µU

}
+ 3

)
6

.

(35)

3.3 Mass flow rate

The mass flow rate denoted by M , is defined as the amount of fluid that passes through any
cross section of the channel per unit width and per unit time, it is given by

M = ρ

∫ h

0

udz,

M = ρh

({
− ∂

∂x

(
p− µ0µH

2

2

)
h2

2µU

}
+ 3

)
6

.

(36)

4 Results and Discussions

Velocity distribution for generalized plane Couette flow , Average velocity and mass flow
rate are determined for ferrofluid in the absence of pressure gradient. In the figure 2 we observe
that for a decreasing pressure in the direction of motion the velocity is positive over the entire
width between the plates, for an increasing pressure in the direction of motion shows that the
velocity over a portion of the channel width can become negative, that is back flow may occur
near the wall which is at rest. We found that the average velocity is constant, whereas mass
flow rate is proportional to the density of the fluid.
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5 Graphs
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Abstract: Nowadays most of the information of a person can be seen through the social
media, which can be seen by everyone where there will be a chance of being hacked It is
important for us to know about the hacking in today’s IT world as everything is moving
forward. Many people usually have a bad opinion about a hacker because of some hackers
who have involved in some malicious activities. That is why many people don’t have good
opinion about the hacker. A study shows that almost 90% attacks have happen on the sides
which shows that easy it is to invade into system or network for insiders. Here is when
Ethical hacking comes into light. Many organizations hire ethical hackers to keep a track
on their system and computer network [1].

Hacking is an activity in which a person exploits the weakness in a system for self-
profit or gratification. There is a need for protecting our system from hackers [2]. Ethical
hacking is the way to find out the weakness and vulnerabilities in the system or computer
network. Ethical hacker has a good purpose to do it. Though the ethical hacking has
become a very upcoming technological subject from last few years, now the doubt remains
the true intentions of the hacker [3], which will be discussed in this paper.

In this paper we will discuss about hacking, techniques of hacking, types of hacking,
ethical hacking, phases of ethical hacking, types of ethical hacking, importance of use of
ethical hacking, softwares used to hack the system. We have discussed about how our
systems are being hacked and how to recover our system from being hacked. As mostly
observed, usually social media accounts and bank accounts is being hacked everywhere.
It is not just that we want everyone to know about our lives but is important to maintain
security. There is a need of ethical hackers everywhere in this cyber crime world.

Keywords: Vulnerabilities, Hacking, Ethical hacking, Cyber crime.

1 Introduction
Hacking has been a part of computing for almost 5 decades and it is broad discipline which

covers a wide range of topics. The first known event of hacking had taken place in 1960 at MIT
and at the same time, the term “hacker” was originated.

Hacking is usually done to gain unauthorized access to a computer system or a computer
network either to harm the system or to steal the sensitive information available on the com-
puter. Hacking is usually legal as long as it is being done to find weakness in a computer or
network system for testing purpose. This sort of hacking is what we call “ETHICAL HACK-
ING”.

1.1 Types of Hacking
In the present world we can see many type of hacking activities that is going on, and there are
many types of hackers. We can separate types of hacking into various categories based on what
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is being hacked. Some of the types are as follows:

1. Web Application Hacking: Web application provides an interface between end users and
web servers through a set of web pages generated at the server end. Hacking a web app
means taking control over the server and its associated software such as database and other
interfaces.
Methods that can be used to hack web applications are SQL injection attacks, cross site
scripting, cross site request forgeries, insecure communications etc. As an expert ethical
hacker you need to test web applications for cross site scripting vulnerabilities, cookie hi-
jacking, command injection attacks and secure web application from such attacks. [4]

2. Network Hacking: Attacking a network means collecting info about the network by using
tools like nmap, NS lookup, ping, tracert etc. with intention to hack full network with the
connected devices. These specially designed software programs generally manipulate data
passing through a network connection in ways designed to obtain more information about
how the target system works.

3. Email Hacking: It involves taking unauthorized access on an email account and using it
without getting the consent of the user. There are number of ways in which a hacker can
illegally gain access to an email account, some of them are virus and phishing [5].

4. Password Hacking: Password hacker refers to the individual who attempts to crack the
secret word, phrase or string of characters used to gain access to secured data. Password
hacking is often referred to as password cracking. In genuine case, the password hacker
tries to recover password from data transmitted by or stored on a computer [6].

5. Computer Hacking: Basically it’s a process of stealing machine id and password by ap-
plying hacking techniques and getting unauthorized access to a computer system. Hackers
transform computers into zombies by using small programs that exploit the weakness in a
computers operating system. In order to infect a computer a hacker must get the installation
program to the victim [7].

1.2 What is Ethical Hacking?
An Ethical hacking includes discovering weakness in a machine or network system for test-

ing purpose and lastly fixing them. A person involved in these activities in a legal way is called
an ethical hacker. An ethical hacker also referred as white hat hacker, is an information secu-
rity expert who systematically attempts to penetrate a computer system, network, application
or other computery resource on behalf of its owners, and with their permission to find security
vulnerabilities.

1.3 Techniques of Hacking
1. Bait and Switch: Using this hacking technique an attacker can buy advertising spaces on

website. Later when a user clicks on the add ,he might get directed to a page which is
infected with malware. This way, they can further install malware or adware on your com-
puter. The hacker can run a malicious program which the user believes to be authentic. This
way, after installing the malicious program on your computer, the hacker gets unprivileged
access to your computer.
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2. Cookie Theft: The cookies of a browser keep our personal data such as browsing history,
user name and passwords for different sites that we access. Once the hacker gets the access
to your cookie, he can even authenticate himself as you on a browser. A popular method to
carry out this attack is to encourage a user’s IP packets to pass through attackers machine.

3. Clickjacking Attacks: Clickjacking is also known by a different name ,UI redress.in this
attack, the hacker hides the actual UI where the victim Is supposed to click. This behav-
ior is very common in app download, movie streaming, and torrent websites. While they
mostly employee this technique to earn advertising dollars, others use to steal the personal
information.

4. Virus, Trojan etc.: Virus and trojan are malicious software programs which get installed
into the victim’s system and keeps sending the victims data to the hacker. They can also
lock your files , serve fraud advertisement, divert the traffic , sniff your data, or spread on
all the computer connected to your network.

5. Phishing: Phishing is a hacking technique using which a hacker replicated the most ac-
cessed sites and traps the victim by sending that spoofed link. Combined in social engi-
neering, it becomes one of the most commonly used and deadliest attack vectors. Once the
victim tries to login or enters some data, the hacker gets the private information of the target
victim using the trojan running on the fake site.

6. Eavesdropping (Passive attacks): Unlike other attacks which are active in nature, using
the passive attacker, a hacker just monitors the computer systems and networks to gain some
unwanted information. The motive behind eavesdropping is not to harm system but to get
some information without being identified.

7. Fake Wap: Even just for fun, a hacker can use software to fake a wireless access point(WAP).
This WAP connects to the official public place WAP. Once you get connected to the fake
WAP, a hacker can access your data. Its once of the easier hacks to accomplish and one just
needs a simple software and wireless network.

8. Waterhole Attacks: Once hackers are aware of your timings, using this type of hacking,
they might create a fake wi-fi access point and modify your most visited website to redirect
them to you to get your personal information. As this attack collects information on a user
from a specific place, detecting the attacker is even harder.

9. Denial of Service (DoS/DDoS): Denial of service attack is a hacking technique to take
down a site or server by flooding that site or server with lot of traffic that the server is unable
to process all the requests in the real time and finally crashes down. This popular technique,
attacker floods the targeted machine with tons of request to overwhelm the resources, which,
in turn, restrict the actual request from being fulfilled.

10. Keyloggers: Keylogger is a simple software that records the simple key sequence and
strokes of your keyboard in a log file on your machine. These log files might even con-
tain your personal email ids and passwords. Also known as keyboard capturing can be
either software or hardware. While software based keyloggers target the programs installed
on a computer, hardware devices targets keyboard, electromagnetic emissions, smart phone
censors etc.

Keyloggers is one of the main reasons why online banking sites give you an option to use
their virtual keyboards. [8]
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11. Spoofing Attack: It involves websites which falsify data by mimicking legitimate sites(trusted)
and they are therefore treated as trusted sites by users or other programs.

12. Packet Sniffer: Applications that capture data packets in order to view data and passwords
in transit over networks.

1.4 Phases of Ethical Hacking

An ethical hacker follow these phases to hack into a system. It helps hackers to make a struc-
tured ethical hacking attack. The entire process can be categorized into following six phases.

1. Reconnaissance: It is also known as foot printing and info gathering phase, where the
hacker collects as much as possible information about the target. The information here is
collected in about three groups: network, host and the people involved.
There are two types of foot printing:

ACTIVE: Directly interacting with the target to gather info about the target.

PASSIVE: Collect information without directly accessing the target and it involves collect-
ing information from social media etc.

2. Scanning: There are 3 types of scanning namely

a) Port Scanning: It involves scanning the target for the information like open ports, live
systems, various services running on the host.

b) Vulnerability Scanning: Checking the target for weakness or vulnerabilities which can
be exploited.

c) Network Mapping: Finding topology of a network, routers, firewalls, serves if any and
host information and drawing a network diagram with the available information.

3. Gaining Access: This phase is where an attacker breaks into the system or network using
various tools or methods. After entering into a system, he has to increase his privilege to
administrator level so he can install an application he needs or modify or hide data.
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4. Maintaining Access: Maintaining access to the target until he finishes the task he planned
to accomplish in the target. After gaining access, the hacker installs some backdoors in order
to enter into the system when he needs access in this owned system in future. Metasploit is
one of the tool used in this process.

5. Clearing Track: An intelligent hacker always clears all evidences so that in the later point
of time, no one will find any traces leading to hacker. This process is actually an unethical
activity. It has to do with the deletion of logs of all the activities that takes place during the
hacking process.

6. Reporting: It is the last step of finishing the ethical hacking process. Here the ethical
hacker compiles a report with his findings and the job that was done such as the tools used,
the success rate, vulnerabilities found and the exploit processes.

1.5 Types of Ethical Hacking

Hackers can be classified into different categories such as white hat, black hat and grey hat,
based on their intent of hacking a system.

i) White hat hackers: White hat hackers are also known as ethical hackers. They never
intent to harm a system, rather they try to find out weakness in a computer or network
system as apart of penetration testing and vulnerabilities assessments.

ii) Black hat hackers: Black hat are also known as crackers ,are those who hacks in order
to gain unauthorized access to a system and harm its cooperation and steal sensitive in-
formation. It is always illegal because of its bad intent which includes stealing corporate
data, violating privacy, damaging the system, blocking network communication, etc.

iii) Grey hat hackers: Grey hat hackers are a blend of both black hat and white hat hackers.
They act without malicious intent but for their fun, they exploit a security weakness in a
computer system or network without the owner’s permission or knowledge. Their intent
is to bring the weakness to the attention of the owners and getting appreciation or a little
bounty from the owners.

iv) Red hat hackers: Red hat hackers are again a blend of both black hat and white hat
hackers. They usually on the level of hacking government agencies, top agencies, top
secret information hubs, and generally anything that falls under the category of sensitive
information.

v) Blue hat hackers: A blue hat hacker is someone outside computer security consulting
firms who is used to bug -test a system proper to its launch. They look for loopholes that
can be exploited and try to close these gaps.

vi) Elite hackers: This is a social status among hackers, which is used to describe the most
skilled or newly discovered exploits will circulate among these hackers.

vii) Script Kiddie: It is a non-expert who breaks into a computer systems by using pre-
packaged automated tools written by others , usually with the little understanding of the
underlying concept , hence the term kiddie.
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viii) Neophyte: A neophyte, n00b, newbie or green hat hacker is someone who is new to
hacking or phreaking and has almost no knowledge or experience of the workings of
technology and hacking.

ix) Hacktivist: A hacktivist is a hacker who utilizes technology to announce a social, ide-
ological, religious or political message. In general, most hacktivism involves website
defacement or denial-service attacks [9].

1.6 Why Ethical Hacking is Necessary?
In today’s digital era, one of the biggest threats comes from cyber criminals. Hackers were not
taken seriously until a few years back . Recently, some big names in the Indian industry had to
pay hefty sums of money to hackers to keep confidential information from being disclosed to
the government. According to surveys conducted by cyber security firms in the country, Indian
firms lost more than 4 billion in 2013 alone because of hackers. Cyber crimes are becoming
more common in todays technology world. The need of ethical hackers are mainly in MNC,
huge organizations where their large and confidential data must be protected from being hacked
or leaked. Ethical hacking as a career offers immense opportunities. [10]

1.7 How to know that our system is begin hacked?
Hacking has become very common now a days. Everyone is interested to know other person
details or to earn money illegally. Some of them are unable to detect that their system is being
hacked. Here we learn how to know that our system is being hacked.

1. Ransom Message: It is a malware, that locks up your precious data and asks for a payment
using online currency to get it back. If you’re lucky, that ransomware message might go
away with a quick reboot. Some of the ransomware messages come from programs that
don’t lock up your data.

2. Fake Antivirus Messages: In moderate decline these days, fake antivirus warning messages
are among the surest signs that your system is being compromised. What most people don’t
realize is that by the tome they see the fake antivirus warning, the damage has been done.
Clicking no or cancel to stop the fake virus scan is too little, too late. The malicious software
has already made use of unpatched software, often a browser add-on program, to completely
exploit your system.

3. Unwanted Browser Toolbars: This is a very common sign of exploitation. Your browser
has multiple new toolbars with names that seem to indicate the toolbar is supposed to help
you. Unless you recognize the toolbar is coming from a very well known vendor, its time to
demo the bogus toolbar.

4. Redirected Internet Searches: Many hackers make their living by redirecting your browser
somewhere other than you want to go. The hacker gets paid by getting your clicks to appear
on someone else’s websites, often those who don’t know that the clicks to their site are from
malicious redirection.

5. Frequent Random Popups: This is a popular sign that you’ve been hacked, is also one of
the more annoying ones. When you’re getting random browser pop-ups from websites that
don’t normally generate the, your system has been compromised.
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6. Your friends receive social media invitations from you that you didn’t send: Either you
or your friends receive invitations to be a friend when you are already connected friends on
that social media site. Then you notice the new friend’s social media site is devoid of other
recognizable friends and none of the older posts. In either case, the hacker either controls
our social media site, has created a second near look alike bogus page or you or friend has
installed a rouge social media application.

7. Your online isn’t working: If you are typing in your online password correctly, for sure,
and it isn’t working, then you might be hacked. Then a hacker has logged in using it and
changed it to keep you out.

8. Unexpected Software Installs: Unwanted and unexpected software installs are a big sign
that your computer system has likely been hacked. For whatever reason, most malware pro-
grams these days are trojans and worms and they typically install themselves like legitimate
programs.

9. Your mouse moves between programs and makes correct solutions: If your mouse
pointer moves itself while making selections that work, you’ve definitely been hacked.
Mouse pointers often move randomly usually due to hardware problems. If the movements
involve making the correct choices to run particular programs, malicious humans are some-
where involved.

10. Your anitmalware software, task manager or registry editor is disabled and cannot be
restarted: This is a huge sign of malicious compromise. If you notice that your antivirus
software is disabled and you didn’t do it, you’re probably exploited, especially if you try to
start task manager or registry editor and they wont start, or start and disappear, or start in a
reduced state. This is very common for malware to do. [11]

1.8 How to recover our system from hacking

• Isolate your system.
• Shutdown and remove the hardware.
• Scan your drive for infection and malware.
• Backup your important files from the previously infected drive.
• Move your drive back to your PC.
• Completely wipe your old hard drive.
• Reload the operating system from trusted media and install update.
• Re-install antivirus, antispyware and other security software.
• Scan your data backup disks for viruses.
• Make a complete backup of your system. [12]

1.9 Disadvantages of Ethical Hacking

• The ethical hacker using the knowledge they gain to do malicious hacking activities.
• Allowing the company’s financial and banking details to be seen.
• The possibility that the ethical hacker will send and/or place malicious code, viruses,

malware and other destructive and harmful things on a computer system.
• Massive security breach. [13]
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2 Conclusion
Hacking is not a crime! It depends on the users mindset. This paper helps one to know about
how to detect whether the system is being hacked or not and try to recover the system . It is
just information given how system being hacked, as we all know this basic knowledge to keep
our system safe in this present technical world.
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1 Introduction

In integral Transform, we transform the unknown function, f(x), to a different function
say F (t). Two of the most famous and widely used integral transforms are the Fourier trans-
forms and the Laplace transforms [1, 2]. The Mellin transform is an integral transform that is
regarded as the multiplicative version of the two-sided Laplace transform. This integral trans-
form is closely connected to the theory of Dirichlet series, and is often used in number theory,
mathematical statistics, and the theory of asymptotic expansions. The Mellin Transform and
its inverse are derived from the complex Fourier transform and its inverse respectively.

Definition of Mellin transform and inverse Mellin transform
The Mellin transform of the function f(x) is defined as follows [3, 4] :

M{f(x)} = f̃(p) =

∞∫
0

xp−1f(x)dx (1)

The inverse Mellin transform of the function f(x) is defined as :

M−1{f̃(p)} = f(x) =
1

2πi

c+i∞∫
c−i∞

xp−1f(p)dp (2)

where f(x) is a real valued function defined on (0,∞) and the Mellin transform variable p is a
complex number. M and M−1 are linear integral operators.

Mellin transform is closely related to the Laplace transform and the Fourier transform,
and the theory of the gamma function and allied special functions. The gamma function is
commonly used extension of the factorial function to complex numbers which is given by [5]

Γ(p) =

∞∫
0

e−ttp−1dt (3)
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2 Properties of Mellin transforms

Theorem 1 (Scaling Property). If M{f(x)} = f̃(p), then M{f(ax)} = a−pf̃(p), a ≥ 0.

Proof. By the definition of Mellin transform and substituting ax = t, we have

M{f(ax)} =
1

ap

∞∫
0

tp−1f(t)dt

=
f̃(p)

ap

Theorem 2 (Mellin Transforms of Derivatives). If M{F (x)} = f̃(p), then
• M{f ′(x)} = −(p− 1)f̃(p− 1) provided xp−1f(x) vanishes as x→ 0 and as x→∞.
• M{f ′′(x)} = (p− 1)(p− 2)f̃(p− 2).

• More generally ,M{f (n)(x)} = (−1)n
Γ(p)

Γ(p− n)
f̃(p−n) provided xp−r−1f (r)(x) = 0 as

x→ 0 for r = 0, 1, 2, . . . , (n− 1) [6, 7].

Proof. By the definition of Mellin transform and integrating the integral by parts, we obtain

M{f ′(x)} =
[
xp−1f(x)

]∞
0
− (p− 1)

∞∫
0

xp−2f(x)dx

= (−1)1 (p− 1)f̃(p− 1)

Again consider,

M{f ′′(x)} =

∞∫
0

xp−1f ′′(x)dx

= (−1)2 (p− 1)(p− 2)f̃(p− 2)

= (−1)2
Γ(p)

Γ(p− 2)
f̃(p− 2)

(
Since Γ(p+ 1) = pΓ(p)

)

Proceeding this way to n times we get, M{f (n)(x)} = (−1)n
Γ(p)

Γ(p− n)
f̃(p− n).

Theorem 3. If M{F (x)} = f̃(p), then
• M{xf ′(x)} = −f̃(p), provided xpf(x) vanishes as x = 0 and as x→∞.
• M{x2f ′′(x)} = (−1)2p(p+ 1)f̃(p).

• More generally, M{xnf (n)(x)} = (−1)n
Γ(p+ n)

Γ(p)
f̃(p).

Proof. By the definition of Mellin transform and integrating the integral by parts, we obtain

M{f ′(x)} =
[
xpf(x)

]∞
0
− p

∞∫
0

xp−1f(x)dx

= −pf̃(p).
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Again consider,
M{x2f ′′(x)} =

∞∫
0

xp−1x2f ′′(x)dx

= (−1)2p(p+ 1)f̃(p).

Proceeding this way to n times we get, M{xnf (n)(x)} = (−1)n
Γ(p+ n)

Γ(p)
f̃(p).

Theorem 4 (Mellin Transforms of Differential Operators). If M{F (x)} = f̃(p), then

• M

{(
x
d

dx

)2

f(x)

}
= (−1)2p2f̃(p)

• More generally, M
{(

x
d

dx

)n
f(x)

}
= (−1)npnf̃(p).

Proof. Consider

M

{(
x
d

dx

)2

f(x)

}
= M{x2f ′′(x) + xf ′(x)}

= p(p+ 1)f̃(p)− pf̃(p)

(
By Theorem 3

)
= (−1)2p2f̃(p).

Proceeding in the same way for n times we get, M
{(

x
d

dx

)n
f(x)

}
= (−1)npnf̃(p).

Theorem 5 (Convolution Theorem). IfM{f(x)} = f̃(p) and M{g(x)} = g̃(p), thenM{f(x)∗
g(x)} = f̃(p) g̃(p).

Proof. Using the convolution property and the definition of Mellin transform, we have

M{f(x) ∗ g(x)} = M


∞∫
0

f(ξ)g

(
x

ξ

)
dξ

ξ


=

∞∫
0

f(ξ)
dξ

ξ

∞∫
0

xp−1g

(
x

ξ

)
dx

=

∞∫
0

ξp−1f(ξ)dξ

∞∫
0

(u)p−1g(u)du

(
Substituting

x

ξ
= u

)
= f̃(p) g̃(p)

Theorem 6 (Parseval’s Type Property). If M{f(x)} = f̃(p) and M{g(x)} = g̃(p), then

M{f(x)g(x)} =
1

2πi

c+i∞∫
c−i∞

f̃(s)g̃(p− s)ds.

75



MES Bulletin of Applied Sciences Volume 2, Issue 1, 2019

Proof. By definition of Mellin transform, we have

M{f(x)g(x)} =

∞∫
0

xp−1f(x)g(x)dx

=
1

2πi

c+i∞∫
c−i∞

f̃(s)g̃(p− s)ds

(
Using equation(2)

)

When p = 1, the above result reduces to

∞∫
0

f(x)g(x)dx =
1

2πi

c+i∞∫
c−i∞

f̃(s)g̃(1 − s)ds, which is

the Parseval formula for the Mellin transform.

3 Examples on Mellin transforms
Example 1: Find the Mellin transform of the folowing functions:

(i) f(x) = e−nx (ii) f(x) =
2

e2x − 1
(iii) f(x) =

1

(1 + x)n

(i) Using the definition of Mellin Transform and substituting nx = t, we get

M{e−nx} =
1

np

∞∫
0

tp−1e−t dt (4)

=
Γ(p)

np

(
from equation (3)

)

Thus
Γ(p)

(ik)p
=

Γ(p)

kp

[
cos

pπ

2
− sin

pπ

2

]
. Separating the real and imaginary part we get,

M{cos kx} = k−pΓ(p) cos
(pπ

2

)
and M{sin kx} = k−pΓ(p) sin

(pπ
2

)
.
(ii) Using the definition of Mellin Transform we have

M

{
2

e2x − 1

}
= 2

∞∑
n=1

∞∫
0

xp−1e−2nxdx

(
Since

∞∑
n=1

e−nx =
1

e−x − 1

)
= 21−pΓ(p)ζ(p). (5)

where ζ(p) =
∞∑
n=1

1

np
, Re(p) > 1 is the Riemann Zeta function.

(iii) Using the definition of Mellin Transform and substituting x =
t

1− t
, we obtain

M

{
1

(1 + x)n

}
=

1∫
0

tp−1(1− t)n−p−1dt
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= B(p, n− p)

=
Γ(p)Γ(n− p)

Γ(n)

where B(p, q) is the standard Beta function.

4 Applications of Mellin transforms
The Mellin transform has special importance in scale representation of signal because it is

a scale invariant transform. The translation invariance property of the Fourier transform along
with the scale-invariance property of the Mellin transform, provides a way of representing sig-
nal free of Doppler distortion. The Fourier-Finite Mellin transform may be applied in image
processing, pattern recognition, speech processing, radar signal analysis etc. It is useful for res-
olution of certain types of classical boundary and initial value problems. The Mellin transform
is an essential tool in studying the distributions of products of random variables, in probability
theory. Inverse Mellin transforms commonly occur in Riesz means. The Mellin transform can
be used in Audio timescale-pitch modification and also useful for summation of infinite series
[7, 8].

Application of Mellin transforms to summation of infinite series
In this section we explore some uses of Mellin transforms in obtaining analytic and asymptotic
information about infinite sums and integrals involving a parameter. The Riemann Zeta func-
tion plays a central role in this.

Example 2: Prove the relation
∞∑
n=1

(−1)n−1

np
= (1− 21−p)ζ(p).

Hence deduce
∞∑
n=1

(−1)n−1

n2
=
π2

12
and

∞∑
n=1

(−1)n−1

n4
=

7π4

720
.

Solution: Consider
∞∑
n=1

(−1)n−1

np
and multiply it by tn, we obtain

∞∑
n=1

(−1)n−1tn

np
=

1

Γ(p)

∞∫
0

xp−1dx
∞∑
n−1

(−1)n−1tne−nx

(
By equation (4)

)

=
1

Γ(p)

∞∫
0

xp−1
t

ex + t
dx

Applying the limit as t→ 1, the above result gives

∞∑
n=1

(−1)n−1

np
=

1

Γ(p)
M

{
1

ex + 1

}

= (1− 21−p)ζ(p)

(
Since M

{
1

ex + 1

}
= (1− 21−p) Γ(p) ζ(p)

)
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(i) Consider
∞∑
n=1

(−1)n−1

n2
=

1

2
ζ(2) =

π2

12

(ii) Consider
∞∑
n=1

(−1)n−1

n4
=

7

8
ζ(4) =

7π4

720

Example 3: Prove the following results :

(i) M


∞∫
0

ξnf(xξ)g(ξ)dξ

 = f̃(p) g̃(1 + n− p)

(ii) M


∞∫
0

ξnf

(
x

ξ

)
g(ξ)dξ

 = f̃(p) g̃(p+ n+ 1)

By using the convolution theorem, we have

(i) M


∞∫
0

ξnf(xξ)g(ξ)dξ

 =

∞∫
0

ηn−1

ξn−1
dη

ξ

∞∫
0

ξnf(η)g(ξ)dξ

(
substituting xξ = η

)
= f̃(p) g̃(1 + n− p)

(ii) M

 ∞∫
0

ξnf

(
x

ξ

)
g(ξ)dξ

 =

∞∫
0

ξp−1ηp−1ξdη

∞∫
0

ξnf(η)g(ξ)dξ

(
substituting

x

ξ
= η

)
= f̃(p) g̃(p+ n+ 1)

Example 4: Sum the series
∞∑
n=1

cos an

n2
and hence deduce

∞∑
n=1

1

n2
=
π2

6
.

Let f(x) =
cos ax

x2
, then M{f(x)} = −Γ(s− 2)

as−2
cos

πs

2
. Thus we have,

∞∑
n=1

cos an

n2
= −M−1

{
ζ(s)

as−2
Γ(s− 2) cos

(πs
2

)}
∞∑
n=1

cos an

n2
= −a

2

2
M−1

{(
2π

a

)2
ζ(1− s)Γ(s− 2)

Γ(s)

}
There are three simple poles at s = 0, 1, 2, whose residues are given by

Res {0} = −1

2
,Res {1} =

π

a
,Res {2} = − π2

3a2

Combining the results , we finally obtain the solution

∞∑
n=1

cos an

n2
= −a

2

2

(
−1

2
+
π

a
− π2

3a2

)
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=
a2

4
− πa

2
+
π2

6

Applying the limit as a→ 0 in the above expression we get,
∞∑
n=1

1

n2
=
π2

6

Solution of Drichlet Boundary Value Problem by Mellin Transforms
Consider the transformed Laplace equation [9]

∂2W

∂r2
+

1

r

∂W

∂r
+

1

r2
∂2W

∂θ2
= 0 r ≥ 0, 0 ≤ θ ≤ π (6)

with the conditions

w(r, π) =

{
T for 0 ≤ r ≤ 1

0 for r > 1
w(r, 0) =

{
2T for 0 ≤ r ≤ 1

0 for r > 1

The asymptotic behaviour of w(r, 0) ≈ r0 as r → 0 and w(r, π) ≈ r
−1
2 as r →∞.

Using the Mellin transform definition we have

w̃(s, θ) =

∞∫
0

rs−1w(s, θ)dr

Equation (6) and the conditions are transformed into

d2w

dθ2
+ s2w = 0

w̃(s, π) =
T

s
and w̃(s, 0) =

2T

s

(7)

Equation (7) is an ordinary differential equation whose solution is given by

w(s, θ) = A sin sθ +B cos sθ (8)

Solving for A and B, we get

w̃(s, θ) =
T (1− 2 cosπs)

sinπs

sin sθ

s
+

2T

s
cos sθ (9)

Solution to the original problem:

Consider the inverse formula in the form

w̃(r, θ) =
1

2πi

c+i∞∫
c−i∞

w̃(s, θ)r−sds, 0 < c <
1

2
(10)

where w̃(s, θ) is given by (9). Using the Cauchy principal value, we evaluate the integral in
(10) and the simple poles of w̃(s, θ) are located at s = ±n, n = 1, 2, 3, . . ..
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At the poles s = n, the residues are given by

w̃(r, θ)r−s = lim
s→n

(s− n)w̃(r, θ)r−s

=
T

π
lim
s→n

[
1

cosπs

(
1− 2 cosπs

s

)
sin sθ + 0

]
r−s (Using (9))

=
T

π

[
(−1)n − 2

]sinnθ

n
r−n

For n = 1, 2, 3, 4, . . . , we obtain w̃(r, θ) =
T

π

∞∑
n=1

[
(−1)n − 2

n

]
sinnθr−n.

At the poles s = −n, the residues are given by

w̃(r, θ)r−s = lim
s→−n

(s+ n)w̃(s, θ)r−s

=
T

π
lim
s→−n

[
1

cos πs

(
1− 2 cosπs

s

)
sin sθ r−s

]
(Using (9))

=
T

π
(−1)n

[
(−1)n − 2

n

]
rn sinnθ

For −n = 1, 2, 3, 4, . . ., we obtain w̃(r, θ) =
T

π

∞∑
n=1

[
(−1)n − 2

n

]
sinnθrn.

At s = 0, we have

w̃(r, θ)r−s = lim
s→n

(s− 0)w̃(r, θ)r−s

= lim
s→n

[
T

π

πs

sin πs
(1− 2 cosπs)θ

sin sθ

θs
+ 2T cos sθ

]
(Using (9))

= 2T − θT

π

Hence the solution is given by

w(r, θ) =


2T − θT

π
+
T

π

∞∑
n=1

[
(−1)n − 2

n

]
rn sinnθ for r < 1

T

π

∞∑
n=1

[
(−1)n − 2

n

]
r−n sinnθ for r > 1

(11)

To verify that equation (11) is the solution of (6).

Case (i) For r < 1, equation (6) becomes

∂2W

∂r2
+

1

r

∂W

∂r
+

1

r2
∂2W

∂θ2
=
T

π

∞∑
n=1

(n− 1)[(−1)n − 2]rn−2 sinnθ

+
T

π

∞∑
n=1

[(−1)n − 2]rn−2 sinnθ − T

π

∞∑
n=1

n[(−1)n − 2]rn−2 sinnθ

= 0
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Also w(r, π) = T and w(r, 0) = 2T . Thus the Laplace equation and the boundary conditions
are satisfied for r < 1.

Case (ii) For r > 1, equation (6) becomes

∂2W

∂r2
+

1

r

∂W

∂r
+

1

r2
∂2W

∂θ2
=
T

π

∞∑
n=1

(n− 1)[(−1)n − 2]r−n−2 sinnθ

−
∞∑
n=1

[(−1)n − 2]r−n−2 sinnθ −
∞∑
n=1

n[(−1)n − 2]r−n−2 sinnθ

= 0

Also w(r, π) = 0 and w(r, 0) = 0. Thus the Laplace equation and the boundary conditions are
satisfied for r > 1.

5 Results and Discussions
We have studied about a type of integral transform called Mellin transform. Using the def-

inition of Mellin transform and inverse Mellin transform we have proved a few properties and
solved a few examples.We have also seen how to apply Mellin transforms to find the summa-
tion to infinite series and also obtain solution for Dirichlet Boundary Value Problem by Mellin
Transforms.
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1 Introduction
A ferrofluid or magneticfluid is a liquid that become strongly magnetised in presence of a

magnetic field. Ferrofluids are colloidal liquids made up of nano scale ferromagentic or fer-
rimagnetic particles suspended in a carrier fluid. It is an artificial material rather than formed
naturally. Ferrofluid is superparamagnetic and create liquid seals held in position by magnetic
fields [1, 2, 3].

Magnetic fluids are used to form liquid seals around the spinning drive shafts in hard disks,
the rotating shaft is surrounded by magnets. A small amount of ferrofluid, placed in the gap
between the magnet and the shaft, will be placed by its attraction of the magnet. The fluid of
magnetic particles forms a barrier which prevents bits from entering the interior of the hard
drive [1].

Magnetic fluids have friction-reducing capabilities. If applied to the surface of a strong
enough magnet, such as one made of neodymium, it can cause the magnet to glide across
smooth surfaces with minimal resistance [4]. It can also be used in semi-active dampers in
mechanical and aerospace applications. While passive dampers are generally bulkier and de-
signed for a particular vibration source in mind, active damper consume more power. Magnetic
fluids based dampers solved both of these issues and are becoming popular in the helicopter
community, which as to deal with large inertial and aerodynamic vibrations [5].

Magnetic fluids can be used to image magnetic domain structures on the surface of fer-
romagnetic materials using a technique developed by Francis Bitter [1]. Magnetic fluids are
commonly used in loudspeaker to remove heat from the voice coil, and to passively damp the
movement of the cone there reside in what would normally be the air gap around the voice coil,
held in space by the speaker’s magnet. Since the Magnetic fluid are paramagnetic,they obey
Curie’s law and thus become less magnetic at higher temperatures. A strong magnet placed
near the voice coil will attract the cold ferrofluid more than the hot magnetic fluids thus forcing
the heated ferrofluid away from the electric voice coil and towards a heat sink [1].

Agrawal [6] has studied the ferrofluid with an inclined lubricated porous slider bearing in
the presence of an external applied magnetic field that is bent to the lower surface of the bearing.
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They observed that the load capacity of the ferrofluid is greater than the viscous fluid and found
that the ferrofluid is performance is superior to the viscous fluid. Raj et al. [7] showed that the
ferrofluids are applied to the damping technology devices such as rotary viscous inertia damper,
linear damper, damper assembly, and dashpot.

2 Geometry and Governing equations
Consider a steady flow of an incompressible viscous fluid between two infinite parallel

rigid plates separated by a distance h. The upper plate moves with uniform velocity Ui while
the lower plate is stationary with zero pressure gradient. Such a flow is called Plane Couette
Flow [6, 8, 9, 10].
Let x be the direction of the flow. z be the direction perpendicular to the flow.

z = 0

z = h
~q = Uî

x

yz

Figure 1: Geometry of the flow

The velocity of the flow is given by,

~q = U(x, y, z)̂i, v = 0, w = 0, (1)

From the continuity equation we have

∇ · ~q = 0,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

since u is independent of x,
∂u

∂x
= 0.

(2)

The flow is extending to infinity in the y direction, the variation in this direction are neglected
and u is independent of y

∂u

∂y
= 0. (3)

Therefore we get
~q = u(z)̂i. (4)

The Navier-Stokes equation [4] is given by,

ρ

[
∂~q

∂t
+ (~q · ∇)~q

]
= ρ~g −∇P + µ0( ~M · ∇) ~H + η∇2~q. (5)

Since the flow is steady, we have
∂~q

∂t
= 0, (6)
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Consider,

(~q · ∇)~q =

(
u(z)

∂

∂x

)
u(z)̂i = 0, (7)

Since the body force are absent, we have

~g = 0, (8)

Consider,

∇2~q =

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
î,

∇2~q =
∂2u

∂z2
î =

d2u

dz2
î, (9)

Let
~M = (Mx,My,Mz), ~H = (Hx, Hy, Hz). (10)

Consider
( ~M · ∇) ~H =

[
(Mx,My,Mz) ·

(
∂
∂x
î, ∂
∂y
ĵ, ∂

∂z
k̂
)]

(Hx, Hy, Hz),

( ~M · ∇) ~H =
(
Mx

∂Hx
∂x

+Mz
∂Hx
∂z

)
î+
(
Mx

∂Hz
∂x

+Mz
∂Hz
∂z

)
k̂.

(11)

Therefore Equation (5) becomes,

−∇p+ µ
d2u

dz2
î+ µ0

(
Mx

∂Hx

∂x
+Mz

∂Hx

∂z

)
î+ µ0

(
Mx

∂Hz

∂x
+Mz

∂Hz

∂z

)
k̂ = 0,

µ
d2u

dz2
î =

∂p

∂x
î+

∂p

∂y
ĵ +

∂p

∂z
k̂ − µ0

(
Mx

∂Hx

∂x
+Mz

∂Hx

∂z

)
î− µ0

(
Mx

∂Hz

∂x
+Mz

∂Hz

∂z

)
k̂,

(12)
Equation (12) in component form is given as,

− ∂p

∂x
+ µ

∂2u

∂z2
+ µ0

(
Mx

∂Hx

∂x
+Mz

∂Hx

∂z

)
= 0, (13)

− ∂p

∂z
+ µ0

(
Mx

∂Hz

∂x
+Mz

∂Hz

∂z

)
= 0. (14)

The continuity equation for an incompressible fluid is

∇ · ~q = 0. (15)

The Maxwell’s equations [4, 11] are given by,

∇× ~H = 0, ~H = −∇φ, ∇ · ~B = 0, ~B = µ0( ~H + ~M). (16)

For ferrofluid the magnetization equation [12, 13]is given by,

~M = µ ~H. (17)

Nomenclature: ~q is the velocity of the fluid, ρ is the density of the fluid, ~g is the gravitation,
P is the pressure, ~M is the magnetization, ~H is the magnetic field intensity, µ0 is the perme-
ability of free space, µ̄ is the magnetic susceptibility, η is the coefficient of viscosity of the
fluid.
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3 Method of Solution
From equation (16) we have,

Hx = −∂φ
∂x

Hz = −∂φ
∂z
, (18)

Mx = µHx Mz = µHz, (19)
~H2 = Hx

2 +Hy
2, (20)

Consider,

Mx
∂Hx

∂x
+Mz

∂Hx

∂z
= µHx

∂

∂x

(
−∂φ
∂x

)
+ µHz

∂

∂z

(
−∂φ
∂x

)
, (21)

using equations (7), (8) and (9) in equation (21), we get

Mx
∂Hx

∂x
+Mz

∂Hx

∂z
= µ

(
−∂φ
∂x

)
∂

∂x

(
−∂φ
∂x

)
+ µ

(
−∂φ
∂z

)
∂

∂z

(
−∂φ
∂x

)
, (22)

Mx
∂Hx

∂x
+Mz

∂Hx

∂z
= µ

(
∂φ

∂x

∂2φ

∂x2
+
∂φ

∂z

∂2φ

∂x∂z

)
, (23)

Mx
∂Hx

∂x
+Mz

∂Hx

∂z
=
µ

2

∂

∂x

{(
∂φ

∂x

)2

+

(
∂φ

∂z

)2
}
, (24)

Mx
∂Hx

∂x
+Mz

∂Hx

∂z
=
µ

2

∂

∂x
(Hx

2 +Hy
2), (25)

Mx
∂Hx

∂x
+Mz

∂Hx

∂z
=
µ

2

∂

∂x
( ~H2). (26)

Also consider,

Mx
∂Hz

∂x
+Mz

∂Hz

∂z
= µ ~Hx

∂

∂x

(
−∂φ
∂z

)
+ µ ~Hz

∂

∂z

(
−∂φ
∂z

)
, (27)

Using equations (18), (19) and (20) in equation (27), we get

Mx
∂Hz

∂x
+Mz

∂Hz

∂z
= µ

(
−∂φ
∂x

)
∂

∂x

(
−∂φ
∂z

)
+ µ

(
−∂φ
∂z

)
∂

∂z

(
−∂φ
∂z

)
, (28)

Mx
∂Hx

∂x
+Mz

∂Hx

∂z
=
µ

2

∂

∂z

{(
∂φ

∂x

)2

+

(
∂φ

∂z

)2
}
, (29)

Mx
∂Hx

∂x
+Mz

∂Hx

∂z
=
µ

2

∂

∂z
(Hx

2 +Hy
2), (30)

Mx
∂Hx

∂x
+Mz

∂Hx

∂z
=
µ

2

∂

∂z
( ~H2). (31)

Substituting equations (18) and (19) in equations (13) and (14), we get

− ∂p

∂x
+ µ

∂2u

∂z2
+
µ0µ

2

∂

∂x
( ~H2) = 0. (32)

− ∂p

∂z
+
µ0µ

2

∂

∂z
( ~H2) = 0. (33)
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Since the pressure gradient is zero,from equation (32) and (33) we get

∂2u

∂z2
= −µ0µ

2µ

∂

∂x
( ~H2), (34)

Integrating equation (34), we get
u = Az +B, (35)

where A and B are constants to be determined.

Boundary Conditions:
Since the fluid is viscous and the upper rigid plate is moving with constant speed U while

the covers rigid plate is stationary, the no slip condition suggests that [14]

u = 0 at z = 0, (36)

u = U at z = h, (37)

using equation(36)and (37) in equation(35) we obtain B = 0, A = U
h

.
Hence equation (35) becomes,

u =
Uz

h
, (38)

where, u∗ = u
U

the non-dimensional velocity, z∗ = z
h

the non-dimensional vertical length.
Neglecting the (*) for simplicity, we get

u = z. (39)

Equation (39) is the velocity distribution for plane Couette flow which is shown in the following
figure

z = 0

z = h

Figure 2: Plane Couette flow

3.1 Maximum Velocity

umax = zmax. (40)
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3.2 Average Velocity
The average velocity is defined as the ratio of the total flow over a cross section to the area

of the cross section and is denoted by u [6, 10].

u =
1

h

∫ h

0

u dz, (41)

u =
1

h

∫ 1

0

u∗Uh dz∗, (42)

u ∗ =

∫ 1

0

u∗ dz∗, (43)

where, u ∗ = u
U

is the non-dimensional average velocity.
Neglecting asterisks (∗) for simplicity and integrating, we get

u =

∫ 1

0

u dz, (44)

u =
1

2
. (45)

3.3 Mass Flow Rate
The mass flow rate is defined as the amount of fluid that passes through any cross section

of the channel per unit width and per unit time and is denoted by M [6, 10].

M = ρ

∫ h

0

u dz, (46)

M = ρh

(
1

h

∫ h

0

u dz

)
, (47)

M = ρhu, (48)

M =
ρh

2
. (49)

4 Results and Discussions
Average velocity and mass flow rate are determined for ferrofluid in the absence of pressure

gradient. We found that the average velocity is constant, whereas mass flow rate is proportional
to the density of the fluid.
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1 Introduction
Germinal Pierre Dandelin was born in Paris and studying the Ecole poly technique. He was

a professor of mining engineering in Belgium. He is the eponym of the Dandelin sphere of
Dandelins theorem in geometry and of the Dandelin-Graeffe numerical method of solution of
algebraic equations. He also published on the stereographic projection, algebraic, probability
theorem.

In 1837, Karl Heinrich Graeffe also discovered the principal idea of the method. He was a
German mathematician, who was at university of Zurich. The method separates the roots of a
polynomial by squaring them repeatedly. This squaring of the roots is done implicitly, that is,
only working on the coefficients of the polynomial. In 1828 he was appointed as the professor
of the Zurich Institute of Technology and as of 1833, associate professor. Graeffe is known
for having been the first to enunciate a method to approximate the roots of any polynomial, a
method known today as the Dandelin-Graeffe method [1].

The only really useful practical method for solving numerical algebraic equations of higher
orders, possessing complex roots, is that devised by C. H. Graeffe early in the nineteenth cen-
tury. When an equation with real coefficients has only one or two pairs of complex roots, the
Graeffe process leads to the evaluation of these roots without great labour. The classical root
squaring method for approximating the real or complex roots of algebraic equations, usually
called the Graeffe method. This is familiar to every numerical analyst and accounts of the
procedure are in every textbook on numerical methods. The method works best when all the
roots are real. The use of logarithm tables to obtain the absolute values of roots and other
special tricks to get the complex roots are understandably enough, the consequences of hand
calculation limitations.

1.1 Graeffe’s root squaring method
Graeffe’s method is one of the root finding method of a polynomial with real coefficients.

This method gives all the roots approximated in each iteration. Also this is one of the direct
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root finding method. Because this method does not requires any initial guesses for roots. A
root finding method which was among the most popular methods for finding roots of univariate
polynomial in the 19th and 20th centuries.

Graeffe’s method has no first approximation need to be known. It has approximations
to all roots are obtained simultaneously, in contradiction to the other methods which furnish
approximations to one root at a time. In spite of this, the computations required by Graeffe’s
method are not much more laborious than those necessary to obtain an approximation to a
single root by one of the other methods if allowance is made for the time necessary to find the
first approximation. Its main advantage is that it also affords a means of finding the complex
roots. It is true that by certain other methods. These advantages are well known, though not
sufficiently appreciated in practice. But so for as can be seen, it is not known that Graeffe’s
method also gives the multiple roots, in a manner essentially simpler than is generally pointed
out in the more elaborate descriptions of the procedure. Further, of all the methods it is the only
one for solving an equation having several pairs of complex roots of the same modulus [1].

2 Applications of Graeffe’s root squaring method
1. Graeffe’s root square method is applicable in aerodynamics and circuit analysis.
2. Graeffe’s root square method is applicable for solving numerical algebraic equations of

higher order, possessing complex roots. when an equation with real coefficient has only
one or pair of complex roots, the Graeffe process leads to the evaluation of these roots
without any great labor.

3. Graeffe’s root square method is applicable to solve the numerical algebraic equations [2].

3 Method of solution

3.1 Distinct roots
Consider the polynomial,

pn(x) = a0x
n + a1x

n−1 + a2x
n−2 + · · ·+ an. (1)

By separating the even power of x and odd power of x in equation (1) we get,

(a0x
n + a2x

n−2 + a4x
n−4 + · · · ) = (a1x

n−1 + a3x
n−3 + a5x

n−5 + · · · ).

Squaring on both sides we obtain,

(a0x
n + a2x

n−2 + a4x
n−4 + · · · )2 = (a1x

n−1 + a3x
n−3 + a5x

n−5 + · · · )2

a20x
2n − (a21 − 2a0a2)x

2(n−1) + (a22 − 2a1a3 + 2a0a4)x
2(n−2) ∓ · · ·+ (−1)na2n = 0. (2)

Put z = −x2 in equation (2) we have,

b0z
n + b1z

n−1 + b2z
n−2 + · · ·+ bn−1 + bn, (3)
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where, b0 = a20
b1 = a21 − 2a0a2

b2 = a22 − 2a1a3 + 2a0a4
...

bn = a2n

Thus all the b′ks (k = 0, 1, 2, · · · , n) are known in terms of a′ks and −ξ21 ,−ξ22 , · · · ,−ξ2n are the
roots of equation (3) and ξ1, ξ2, · · · , ξn are roots of equation (1). Then the coefficients of b′ks
are obtain as follows,

a0 a1 a2 a3 . . . an
a21 a22 a23 . . . a2n

−2a0a2 −2a0a3 −2a2a4 . . .
2a0a4 2a1a5 . . .

· ·
· ·
· ·

b0 b1 b2 b3 . . . bn

The first terms in the above table starting with positive signs then it having alternate signs.
The first term is the squaring of the coefficients ak. The second term is twice the product of the
nearest neighboring coefficient ak−1 and ak+1. The next neighboring coefficient ak−2 and ak+1

is also twice the product of the third term. This process is continued until there are no available
coefficients to forms the cross product. This procedure is repeated many times so that the final
equation is,

B0x
n +B1x

n−1 +B2x
n−2 + · · ·+Bn−1x+Bn = 0. (4)

And equation (4) has the roots R1, R2, · · · , Rn such that Ri = −ξ2i
m, for i = 1, 2, · · · , n.

Suppose |ξ1| > |ξ2| > |ξ3| > · · · |ξn| then |R1| >> |R2| >> · · · >> |Rn|. Hence the roots
Ri are very widely separated for large m and we have,

−B1

B0

=
∑

Ri ≈ R1

−B2

B0

=
∑

RiRj ≈ R1R2

−B3

B0

=
∑

RiRjRk ≈ R1R2R3

...

(−1)n
Bn

B0

= R1R2 · · ·Rn

Ri = − Bi

Bi−1
, i = 1, 2, 3 · · · , n

Applying magnitude on both sides we get,

ξ2i
m

= |Ri| =
Bi

Bi−1
, i = 1, 2, 3, · · · , n. (5)

The equation (5) determines the absolute values of the roots and substituting this in equation
(1) will gives the sign of the roots [3].
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3.2 Equal roots
If two roots of an equation are numerically equal, the root-squares process can never

breakup the equation. After that the magnitude of the Bk is half of the square of the mag-
nitude of the corresponding coefficient then it indicates that ξk is double roots.

Rk ≈ −
Bk

Bk−1
and Rk+1 = −Bk+1

Bk

RkRk+1 ≈ R2
k ≈

∣∣∣∣Bk+1

Bk−1

∣∣∣∣
|Rk|2 ≈ |ξk|2(2

m) =

∣∣∣∣Bk+1

Bk−1

∣∣∣∣
This gives the magnitude of the double root. Directly we have to found the double roots. Since
Rk and Rk+1 converges to the same root after sufficient squaring this converges to the double
root is slow. It would require few more squaring to stabilize the roots [4].

3.3 Complex roots
If the roots of ξk and ξk+1 form a complex pairs, then this would cause the coefficients

of xn−k in this successive squaring to fluctuate both in magnitude and sign. If ξk, ξk+1 =
βk exp (±iQk) is the complex pairs and we applying the magnitude and we get the real part,

2βmk cos(mΦk)

For m sufficiently large, βk can be determined from the below relation,

|βk|2(2
m) ≈

∣∣∣∣Bk+1

Bk−1

∣∣∣∣
and φ is suitably determined from the relation,

2βmk cos(mΦk) ≈
∣∣∣∣Bk+1

Bk−1

∣∣∣∣ .
If the equation has only on complex pair, then we can first determine all the roots. The complex
pair can be written as ξk, ξk+1 = p± iq. The sum of the roots is given by, [3]

ξ1 + ξ2 + · · ·+ ξk−1 + 2p+ ξk+2 + · · ·+ ξn =
−a1
a0

and p is determined by, |βk|2 = p2 + q2.

4 Examples and Discussions

Example 1: Find all the roots of the polynomial x3 − 6x2 + 11x − 6 = 0 using the Graeffe’s
root squaring method [5].

Solution: Given, x3 − 6x2 + 11x− 6 = 0

The coefficients of the successive root squaring are tabulated in the below table,
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m 2m a0 a1 a2 a3
0 1 1 −6 11 −6

1 36 121 36
−22 −72

1 2 1 14 49 36
1 196 2401 1296

−98 −1008
2 4 1 98 1393 1296

1 9604 1940449 1679616
−2786 −254016

3 8 1 6818 1686433 1679616
1 46485124 2.8440563× 1012 2.821109907× 1012

−3372866 −2.2903243× 1010

4 16 1 43112258 2.8211530× 1012 2.82110990x× 1012

We know that,

|ξi|2
m

= |Ri| =
∣∣∣∣ Bi

Bi−1

∣∣∣∣
For i = 1 |ξ1|16 =

∣∣∣∣B1

B0

∣∣∣∣ =

∣∣∣∣43112258

1

∣∣∣∣ = |43112258|

|ξ1| = |43112258|
1
16 = 3.00028

For i = 2
|ξ2|16 =

∣∣∣∣B2

B1

∣∣∣∣ =

∣∣∣∣2.8211530× 1012

43112258

∣∣∣∣ = |654773044|

|ξ2| = |654773044|
1
16 = 1.999 ≈ 2

For i = 3

|ξ3|16 =

∣∣∣∣B3

B2

∣∣∣∣ =

∣∣∣∣2.821109907× 1012

2.8211530× 1012

∣∣∣∣ = |0.99984672|

|ξ3| = |0.99984672|
1
16 = 0.9999 ≈ 1

The exact roots of the equations are ξ1 = 3, ξ2 = 2, ξ3 = 1.

Example 2: Find all the roots of the polynomial x3 − 4x2 + 5x − 2 = 0 using the Graeffe’s
root squaring method.

Solution: Given, x3 − 4x2 + 5x− 2 = 0

The coefficients of the successive root squaring are tabulated in the below table,
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m 2m a0 a1 a2 a3
0 1 1 −4 5 −2

1 16 25 4
−10 −16

1 2 1 6 9 4
1 36 81 16

−18 −48
2 4 1 18 33 16

1 324 1089 256
−66 −573

3 8 1 258 513 256
1 66564 263169 65536

−1026 132096
4 16 1 65538 131073 65536

1 4295229444 1.71801313× 1010 4294967296
262146 8590196736

5 32 1 4294967298 8589934594 4294967296

In this table we notice that the magnitude of the coefficient B2 is half of the square of the
magnitude of the corresponding coefficient. This phenomenon indicates that ξ2 is a double
root. We obtained the magnitude of the root as,

|ξk|2
m

=

∣∣∣∣Bk+1

Bk−1

∣∣∣∣
For k = 1 |ξ1|2

m

=

∣∣∣∣B2

B0

∣∣∣∣
|ξ1|32 =

∣∣∣∣8589934594

1

∣∣∣∣
|ξ1| = |8589934594|

1
32 = 1.9999

Hear |ξ2| = B2 is double root.
For k = 2

|ξ2|64 =

∣∣∣∣B3

B1

∣∣∣∣ =

∣∣∣∣4294967296

4294967298

∣∣∣∣ = |0.9999|

|ξ2| = |0.9999|
1
64 = 1 = ξ3.

All the roots are positive and the exact roots are 2, 1, 1.

Example 3: Find all the roots of the polynomial x4−x3 + 3x2 +x− 4 = 0 using the Graeffe’s
root squaring method.

Solution: Given, x4 − x3 + 3x2 + x− 4 = 0

The coefficients of the successive root squaring are tabulated in the below table,
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m 2m a0 a1 a2 a3 a4
0 1 1 −1 3 1 −4

1 1 9 1 16
−6 2 24

−8
1 2 1 −5 3 25 16

1 25 9 625 256
−6 250 −96

32
2 4 1 19 291 529 2656

1 361 84681 279841 65536
−582 −20102 148992

512
3 8 1 −221 65091 130849 65536

Since B1 alternates in signs, we have a pair of complex roots which can be obtained using
B0, B1andB2. By real roots we have,

|α| = |Ri| =
∣∣∣∣ Bi

Bi−1

∣∣∣∣ = |ξ2m|

First real root
|α1|8 =

∣∣∣∣B4

B3

∣∣∣∣ =

∣∣∣∣ 65536

130894

∣∣∣∣ = |0.500852127|

|α1| = (|0.500852178|)
1
8

|α1| = |ξ1| = |0.917199| ≈ 0.9172

By substituting the |ξ1| in given equation this root is found to be negative ξ1 = −0.9172

Second real root
|α2|8 =

∣∣∣∣B3

B2

∣∣∣∣ =

∣∣∣∣130849

65091

∣∣∣∣ = |2.010247192|

|α2| = |2.010247192|
1
8

|α2| = |ξ2| = |1.0912| ≈ 1.0912

This root is found to be positive.
To obtained the pair of complex roots p± iq, we have β =

√
p2 + q2,

where |β|2m =

∣∣∣∣Bk+1

Bk−1

∣∣∣∣
Put k = 1

|β|16 =

∣∣∣∣B2

B0

∣∣∣∣ =

∣∣∣∣65091

1

∣∣∣∣
β = |65091|

1
16 = 1.9991

We have
2p+ ξ1 + ξ2 =

−a1
a0

p = 0.413

and q =
√
β2 − p2 =

√
(1.9991)2 − (0.413)2 = 1.953

Hence the root of the given polynomial are −0.9172, 1.0912, 0.4130,±1.9560i.
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5 Conclusion
In this chapter we discussed about Graeffe’s root squaring method which is direct method,

it yields not only one root at a time but also all roots (real, complex, equal) simultaneously.
There is considerable saving in time also. In this method, there must be at least one real
roots because complex roots occurs in pairs. Except Graeffe’s root squaring method all other
method requires a first approximation but the finding of the first approximation is difficult
particularly in the case of complex roots. Graeffe’s method on the other hand does not require
a first approximate value. Besides, it is not necessary to use criteria of convergence in order to
examine whether the approximate value of polynomial is sufficiently close to the actual roots.
Several numerical examples are solved to illustrate the efficiency and the performance of the
Graeffe’s root squaring method . Therefore it seems to us that Graeffe’s root squaring method
is best for solving non linear algebraic equations.
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1 Introduction
The Approximation theory is the branch of mathematical analysis and studying numerical

methods. It is concerned with how functions can be approximated with simple functions and
quantitatively characterizing the errors. Approximation theory leads to approximate the given
quantities by specific appropriate conditions for study about the size and properties. It is based
upon summation of a series of terms with orthogonal polynomials and generalized Fourier se-
ries. They are obtained by power series expansions in which the higher order terms are dropped.

The main objective of approximation theory are the approximation of functions. Its foun-
dations are laid by the work of P. L. Chebyshev (1854-1859) on uniform approximation of
functions by polynomials and by K. Weierstrass, who in 1885 established the principle which
is possible to approximate a continuous function on a finite interval by polynomials. The devel-
opment of approximation theory was to a large extent determined by the fundamental work of
H. Lebesgue, Ch. J. de la Vallee-Poussin, S.N. Bernstein, D. Jackson have done works on the
approximation of functions. It also studies about the process of approximating general func-
tions by simple functions such as polynomials, finite element or Fourier series.

Approximation theory plays a major role in the analysis of numerical methods. The ap-
proximation theory will explore different choices of approximation spaces and how they can be
effective in different polynomials such as Trigonometric polynomials, Adomian polynomials,
Least square approximation, Rational approximation, Chebyshev approximation etc [1].

1.1 Trigonometric polynomial
A Trigonometric polynomial is a finite linear combination of functions sin(nx) and cos(nx)

with n taking on the values of one or more natural numbers. The use of series of sine and cosine
functions to represent arbitrary functions had its beginnings in the 1750s with the study of the
motion of a vibrating string. This problem was considered by Jean d’Alembert and the taken
up by the foremost mathematician of the time, Leonhard Euler. Daniel Bernoulli was the one
who first advocated the use of infinite sum of sine and cosine as a solution to the problem [2].
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Polynomial is an expression which consists of operation such as addition, subtraction, mul-
tiplication and non-negative integer with exponents, variable and coefficient. Trigonometry
table was apparently compiled by Hipparchus. He is known as father of trigonometry. Trigono-
metric polynomial is a function denoted as T : R→ R with,

T (x) =
a0
2

+

n∑
j=1

aj cos(jx) + bj sin(jx).

Fourier series is a trigonometric polynomial of order m with function of t is in the form of,

p(t) = a0 +

m∑
k=1

(ak cos(kt) + bk sin(kt)),

where a0, a1, a2 . . . am, b1, b2, . . . bm are coefficient of real numbers. Trigonometric polynomial
in space is presented based on the basis, symmetric trigonometric polynomial approximation
like Bernstein polynomial are constructed two kinds of nodes are given to show that the trigono-
metric polynomial sequence is uniformly convergent. Trigonometric polynomials will display
the order of the polynomial and in the set of polynomials which are sum of multiples of sin(kx)
and cos(kx) [3].

1.2 Fourier series
Fourier series is the sum of orthogonal sinusoidal, with representation of periodic function.

Fourier series is introduced by, Jean Baptiste Joseph Fourier has made major contribution to
study of trigonometric series. The product of two function with the weight function is equal to
zero on the specified interval then the two functions are orthogonal. Fourier analysis depend on
the choice of trigonometric function like sine and cosine, it is a central tool for periodic signals.
Orthogonal polynomial is a another orthogonal family its find an application in numerical tech-
niques such as least-square approximation. Orthogonality is very useful when we represent a
periodic function as trigonometric series.

Vlamidir and Hans gave the approximation for continuous functions by using trigonometric
polynomial in the interval [−π, π]. The trigonometric functions like cosine and sine defined
for real number are continuous for all real numbers. The functions tangent, cotangent, secant,
and co-secant are essential discontinuities. In general approximating polynomial include poly-
nomial, trigonometric function, exponential function and rational function. When p(x) is a
polynomial which is approximated for any continuous function f(x) on a finite interval [a, b]
is guaranteed by Weierstrass approximation theorem. In the least square approximation least
squares means that the minimizing the overall solution to sum of square of the residues [4].

2 Applications of trigonometric polynomials
• The fundamental trigonometric functions like sine and cosine are used to describe the

sound and light waves.
• It is used in the creation of Maps to calculate heights of waves and tides in ocean.
• It is used in geography to measure the distance between landmarks in astronomy to mea-

sure the distance of nearby stars and also in satellite navigation system gun shot.
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• It is useful in fields like engineering physics surveyors architects even in the investigation
of crime scene it is used to calculate a trajectory of a projectile and to causes of a collision
in a car accident, further it is used to identify how an object falls in what angle.

• It is used in marine biology for measurements to figure out the depth of sunlight that
affects algae to photosynthesis using trigonometric functions and it is used to estimate
the size of larger animals like whales and also to understand their behavior

• It is used in developing computer music, as sound travels in the form of waves and this
wave pattern through a sine or cosine function for developing computer music.

• It is used in measuring the height of a building or a mountain to find distance of building
from view point and the elevation angle can easily determined the height of a building
using trigonometric function.

3 Method of solution

Let f(x) be a function a0, an and bn be the coefficient, cosine and sine be the trigonometric
functions by taking the infinite sum of sine and cosine function for positive integers n. The
Fourier series is constructed as,

f(x) =
a0
2

+
∞∑
n=1

an cos(nx) + bn sin(nx), (1)

where, a0 = 1
π

π∫
−π
f(x)dx, an = 1

π

π∫
−π
f(x) cos(nx)dx, and bn = 1

π

π∫
−π
f(x) sin(nx)dx

Then for the set of functions {φ0, φ1, · · · , φ2n−1}. By using Fourier series we can write,

φ0(x) =
1

2
φk(x) = cos kx · · · ∀ k = 1, 2, · · ·n

φn+k(x) = sin kx · · · ∀ k = 1, 2, · · ·n− 1

The set is orthogonal on the interval [−π, π] with respect to the weight function [W (x)] is 1.
The orthogonality for the integer j the integrals of sin(jx) and cos(jx) over [−π, π] are 0. The
product of sine and cosine can be written as the sum of trigonometric identities as fallows,

sin t1 sin t2 =
1

2
[cos(t1 − t2)− cos(t1 + t2)]

cos t1 cos t2 =
1

2
[cos(t1 − t2) + cos(t1 + t2)]

sin t1 cos t2 =
1

2
[sin(t1 − t2) + sin(t1 + t2)]

3.1 Orthogonal trigonometric polynomials
Let Tn is the set of all linear combination of functions φ0, φ1, · · · , φ2n−1. The set includes

set of linear combination of function such as sin(nx) and cos(nx) for natural numbers is
called as trigonometric polynomial where degree less than or equal to n. For the function
f ∈ C[−π, π]. To find the continuous least square approximation for the functions in Tn is in
the form,

Sn(x) =
a0
2

+ an cos(nx) +

n−1∑
k=1

(ak cos(kx) + bk sin(kx)). (2)
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Since {φ0, φ1, · · · , φ2n−1} is an orthogonal set of function on [−π, π] with W (x) = 1, where
W is an weight function on interval I . If W (x) ≥ 0∀x in I but W (x) 6= 0 on any sub-interval
in I . The weight function is mainly to assign varying degrees of importance to approximations
on certain portion of the interval.

For example, W (x) =
1√

1− x2
and φ0, φ1, · · · , φn is a set of linearly independent function on

[a, b] and W is a weight function on [a, b] when f ∈ C[a, b]. The linear combination is denoted

as, p(x) =
n∑
k=0

akφk(x) to minimize the error we take,

E = E(a0 . . . an) =

∫ b

a

W (x)[f(x)−
n∑

k=0

akφk(x)]2dx.

Partially differentiating with respect to aj ∀j = 0, 1, · · · , n we get,

∂E

∂aj
= 2

b∫
a

W (x)[f(x)−
n∑

k=0

akφk(x)]dx(φj(x)).

The system of normal equation can be written as,
b∫

a

W (x)f(x)φj(x)dx =

n∑
k=0

ak

b∫
a

w(x)φk(x)φj(x)dx, ∀j = 0, 1, · · · , n.

If the functions φ0, φ1, · · · , φn can be chosen as,
b∫

a

W (x)φk(x)φj(x)dx =

{
0, when j 6= k

αj > 0 , when j = k

If we choose the functions φ0 φ1 . . . φn then we have,

aj =
1

αj

b∫
a

W (x)f(x)φjdx.

Now the least square approximation is simplified for the chosen function φ0 φ1 . . . φn, which
satisfy the orthogonality condition.

• Orthogonal set of function {φ0 φ1 . . . φn} is orthonormal when∫ b

a

W (x)φk(x)φj(x)dx =

{
0 , j 6= k

αj > 0 , j = k
(3)

• The least square approximation for orthogonal set of function such as {φ0 . . . φn} on [a, b]
with respect to weight function W can be written as,

aj =

b∫
a

W (x)φj(x)f(x)dx

b∫
a

W (x)[φj(x)]2dx

=
1

αj

b∫
a

W (x)φj(x)f(x)dx. (4)

For [−π, π] with W (x) = 1 using in equation 4 we get,

ak =

π∫
−π
f(x) cos(kx)dx

π∫
−π

(cos(kx))2dx

(5)
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Consider,

π∫
−π

(cos(kx))2 = π (6)

By substituting equation (6) in equation (5) we get,

ak =
1

π

π∫
−π

f(x) cos(kx)dx ∀ k = 0, 1, 2, . . . n.

Similarly we can do it for sine function then we have,

bk =

π∫
−π
f(x) sin(kx)dx

π∫
−π

(sin(kx))2dx

(7)

Consider,

π∫
−π

(sin(kx))2 = π (8)

By substituting equation (8) in equation (7) we get,

bk =
1

π

π∫
−π

f(x) sin(kx)dx ∀ k = 0, 1, 2, . . . n.

Then by substituting limit n → ∞ in equation (2) then we get Fourier Series. It is used to
describe the both ODE and PDE occur in physical situations [2].

3.2 Discrete trigonometric approximation
Discrete least square approximation and interpolation for large amount of data is done by

using discrete analogue. For the collection of 2m paired data points {(xj, yj)}2m−1j=0 first element
in this is equally partitioned in a closed interval let us choose it as [−π, π].

xj = −π +

(
j

m

)
π for each j = 0, 1, 2 . . . , 2m− 1

If the interval is not [−π, π] then we have to apply a simple linear transformation to transform it
into the [−π, π]. Discrete case is mainly used to determine the trigonometry polynomial Sn(x)
in Tn to minimize we can take,

E(Sn) =

2m−1∑
j=0

[yj − Sn(xj)]
2.

By substituting Sn(x) in xj form we get,

E(Sn) =

2m−1∑
j=0

yj −
a0

2
+ an cos(nxj) +

n−1∑
k=1

(ak cos(kxj) + bk sin(kxj))


2

.

To determine the constant for the equally spaced points {xj}2m−1j=0 and summation in [−π, π] is,

2m−1∑
j=0

φk(xj)φl(xj) = 0 for k 6= l

To check this orthogonality condition we need to prove the lemma.
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3.2.1 Lemma

Suppose that the integer r is not a multiple of 2m then,

•
2m−1∑
j=0

cos(rxj) = 0 and
2m−1∑
j=0

sin(rxj) = 0

Moreover if r is not a multiple of m, then

•
2m−1∑
j=0

(cos(rxj))
2 = m and

2m−1∑
j=0

(sin(rxj))
2 = m

Proof: let us consider the Euler formula to prove the Lemma.
Euler formula states that i2 = −1 then for each real value z we can write it as,

eiz = cos(z) + i sin(z) (9)

Applying the summation to equation (9) we get,

2m−1∑
j=0

cos(rxj) + i

2m−1∑
j=0

sin(rxj) =

2m−1∑
j=0

(cos(rxj) + i sin(rxj).

By using equation (9) we get,
2m−1∑
j=0

cos(rxj) + i

2m−1∑
j=0

sin(rxj) =

2m−1∑
j=0

eirxj , (10)

where xj = −π + j
m
π .

Considering eirxj and substituting xj we get,

eirxj = eir(−π+j(π/m)) = e−irπ · e(irjπ)/(m). (11)

By substituting equation (11) in equation (10) we get,

2m−1∑
j=0

cos(rxj) + i

2m−1∑
j=0

sin(rxj) = e−irπ
2m−1∑
j=0

e(irjπ)/m. (12)

Since first term is 1 and ratio eirπ/m 6= 1 and also
2m−1∑
j=0

e(irjπ)/m is in geometric series. We get

in the form of,
2m−1∑
j=0

e(irjπ)/m =
1− (eirπ/m)2m

1− eirπ/m
=

1− e2irπ

1− eirπ/m
. (13)

But
e2irπ = cos(2πr) + i sin(2πr) = 1 then 1− e2irπ = 0. (14)

By substituting equation (13) and equation (14) in equation (12) we get,

2m−1∑
j=0

cos(rxj) + i

2m−1∑
j=0

sin(rxj) = 0.
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Separating the imaginary and real parts we get,

2m−1∑
j=0

cos(rxj) = 0 and
2m−1∑
j=0

sin(rxj) = 0.

To prove for r is not multiple of m we have,
2m−1∑
j=0

cos(rxj)
2 = m and

2m−1∑
j=0

sin(rxj)
2 = m

Hence lemma is proved for both the condition. Now let us prove the orthogonality condition
by considering the example,

2m−1∑
j=0

φk(xj)φn+l(xj) =

2m−1∑
j=0

cos(kxj) sin(lxj). (15)

By substituting, cos(t1) sin(t2) =
1

2
[sin(t1 − t2) + sin(t1 + t2)]

We can write it as,

2m−1∑
j=0

cos(kxj) sin(lxj) =
1

2

2m−1∑
j=0

sin(l + k)xj +

2m−1∑
j=0

sin(l − k)xj

 .
Since (l + k) and (l − k) are not multiple of 2m we get,

2m−1∑
j=0

cos(kxj) sin(lxj) = 0.

3.2.2 Theorem

The constant in the summation

Sn(x) =
a0
2

+ an cos(nx) +

n−1∑
k=1

(ak cos(kx) + bk sin(kx))

that minimize the least square sum as,

E(a0 . . . an, b1 . . . bn−1) =

2m−1∑
j=0

[yj − Sn(xj)]
2

are
ak =

1

m

2m−1∑
j=0

yj cos(kxj) ∀ k = 0, 1, 2, . . . , n

and

bk =
1

m

2m−1∑
j=0

yj sin(kxj) ∀ k = 1, 2, . . . , n− 1.

Proof: Given,
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Sn(x) =
a0
2

+ an cos(nx) +

n−1∑
k=1

(ak cos(kx) + bk sin(kx)) (16)

E(a0 . . . an, b1 . . . bn−1) =

2m−1∑
j=0

[yj − Sn(xj)]
2. (17)

Let differentiate equation (17) partially with respect ak and bk and equate to zero.
Differentiating partially with respect to ak we get,

∂E

∂ak
=

2m−1∑
j=0

yj cos(kxj)−
2m−1∑
j=0

Sn(xj) cos(kxj).

By substituting the equation (17) we get,

0 =
2m−1∑
j=0

yj cos(kxj)−
a0
2

2m−1∑
j=0

cos(kxj)− an
2m−1∑
j=0

cos(kxj) cos(nxj)

−
n−1∑
l=1

al

2m−1∑
j=0

cos(kxj) cos(lxj)−
n−1∑
l=1
l 6=k

bl

2m−1∑
j=0

cos(kxj) sin(lxj)− ak
2m−1∑
j=0

(cos(kxj))
2. (18)

We know that,
2m−1∑
j=0

cos(rxj) = 0 and
2m−1∑
j=0

sin(rxj) = 0 (19)

2m−1∑
j=0

cos(rxj)
2 = m and

2m−1∑
j=0

sin(rxj)
2 = m (20)

2m−1∑
j=0

cos(kxj) sin(lxj) = 0. (21)

By using equations (19) ,(20) and (21) in equation (18) we get,

ak =
1

m

2m−1∑
j=0

cos(kxj)yj.

Similarly differentiating partially with respect to bk we obtain,

∂E

∂bk
=

2m−1∑
j=0

yj sin(kxj)−
2m−1∑
j=0

Sn(xj) sin(kxj).

By substituting the equation (16) we get,

0 =
2m−1∑
j=0

yj sin(kxj)−
a0
2

2m−1∑
j=0

sin(kxj)− an
2m−1∑
j=0

sin(kxj) cos(nxj)−
n−1∑
l=1

al

2m−1∑
j=0

sin(kxj) cos(lxj)
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−
n−1∑
l=1
l 6=k

bl

2m−1∑
j=0

sin(kxj) sin(lxj)− bk
2m−1∑
j=0

(sin(kxj))
2. (22)

Also by using equation (19) ,(20) and (21) in equation (22) we get,

bk =
1

m

2m−1∑
j=0

sin(kxj)yj.

Hence proved the theorem [2].

4 Examples and Discussions

Example 1: Show that the function φ0(x) = 1/2, φ1(x) = cos(x) . . . , φn(x) = cos(nx),
φn+1(x) = sin(x) . . . φ2n−1(x) = sin(n − 1)(x) are orthogonal on [−π, π] with respect to
W (x) = 1.

Solution: Given φ0(x) = 1/2

φi(x) = cos(ix) ∀ i = 1 . . . n

φn+1(x) = sin(ix) ∀ i = 1 . . . n− 1

To show that the given functions are orthogonal on [−π, π] with respect to W (x) = 1.
We know that

2 sin(A) cos(B) = sin

(
A+B

2

)
+ sin

(
A−B

2

)
.

Case 1: For i = 1, 2, . . . n
Since cosine is even

π∫
−π

W (x)φ0(x)φi(x)dx =

[
sin(ix)

i

]π
0

π∫
−π

W (x)φ0(x)φi(x)dx = 0.

Case 2: For i = 1, 2, . . . n− 1

π∫
−π

W (x)φ0(x)φn+1(x)dx =
1

2

π∫
−π

sin(ix)dx

Since sine is odd function, π∫
−π

W (x)φ0(x)φn+1(x)dx = 0.

Case 3: For i = 1, . . . , n and j = 1 . . . n− 1

π∫
−π

W (x)φi(x)φn+j(x)dx =

π∫
−π

cos(ix) sin(jx)dx

Since sine is odd function,
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π∫
−π

W (x)φi(x)φn+j(x)dx = 0.

Case 4:
π∫

−π

W (x)φ0(x)φ0(x)dx =

π∫
−π

1

4
dx

π∫
−π

W (x)φ0(x)φ0(x)dx =
2π

4
> 0

Case 5:
π∫

−π

W (x)φi(x)φi(x)dx =

π∫
−π

cos2(ix)dx ∀i = 1 . . . n

Since
π∫
−π

cos2(ix)dx > 0, hence cos2(ix) > 0 on (0, π/2) and non-negative on [−π, π].

Case 6:
π∫

−π

W (x)φn+j(x)φn+j(x)dx =

π∫
−π

sin2(jx)dx ∀j = 1 . . . n− 1

Since
π∫
−π

sin2(jx)dx > 0, hence sin2(jx) ≥ 0 on [−π, π) and strictly positive on [0, π].

From all the cases we have verified the definition of orthogonality with respect a weight func-
tion. This means given function orthogonal with respect weight function hence proved.

Example 2: Find the continuous least square trigonometric polynomial S3(x) for f(x) = ex

on the interval [−π, π].

Solution: Given. f(x) = ex for [−π, π].
We know that,

Sn(x) =
a0
2

+ an cos(nx) +

n−1∑
k=1

(ak cos(kx) + bk sin(kx)).

For n = 3 we get,
S3(x) =

a0
2

+ a3 cos(3x) +

2∑
k=1

(ak cos(kx) + bk sin(kx)).

By expanding the summation we have,

S3(x) =
a0
2

+ a3 cos(3x) + a1 cos(x) + a2 cos(2x) + b1 sin(x) + b2 sin(2x). (23)

To find a0, a1, a2, a3, b1 and b2 we know that,

ak =
1

π

π∫
−π

f(x) cos(kx)dx ∀ k = 0, 1, 2, . . . n (24)
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and

bk =
1

π

π∫
−π

f(x) sin(kx)dx ∀ k = 0, 1, 2, . . . n. (25)

By substituting k = 0 in equation (24) we obtain,

a0 =
1

π

∫ π

−π
exdx = 7.3521558

For k = 1 in equation (24) we get,

a1 =
1

π

π∫
−π

ex cos(x)dx

Let,
I =

π∫
−π

ex cos(x)dx

I =
1

2
[cos(x)ex + sin(x)ex]π−π

By substituting I value back to a1 we get, a1 = −3.676077912.
For k = 2 in equation (24) we get,

a2 =
1

π

∫ π

−π
ex cos(2x)dx

Let,
I =

π∫
−π

ex cos(2x)

I =
1

5
[cos(2x)ex + 2 sin(2x)ex]π−π

By substituting I back to the a2 we obtain, a2 = 1.470431164.
For k = 3 in equation (24) we get,

a3 =
1

π

π∫
−π

ex cos(3x)dx

Let,
I =

π∫
−π

ex cos(3x)

I =
1

10
[cos(3x)ex + 2 sin(3x)ex]π−π

By substituting I back to the a3 we get, a3 = −0.735215582.
For k = 1 in equation (25) we obtain,

b1 =
1

π

∫ π

−π
ex sin(x)

Let,
I =

π∫
−π

ex sin(x)

I =
1

2
[sin(x)ex − cos(x)ex]π−π
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Substituting I value back to the b1 then, b1 = 3.676070.
For k = 2 in equation (25) we get,

b2 =
1

π

∫ π

−π
ex sin(2x)dx

Let, I =

∫ π

−π
ex sin(2x)dx

I =
1

5
[sin(2x)ex]π−π − 2 cos(2x)ex]π−π − 4I]

Substituting I value back to the b2 then, b2 = −2.940862.
Substituting a0, a1, a2, a3, b1 and b2 in equation (23) we get,

S3(x) = 3.67607791− 3.676077912 cos(x) + 1.470431164 cos(2x)− 0.735215582 cos(3x)

+ 3.676070 sin(x)− 2.940862 sin(2x).

Example 3: Determine the error of discrete least square trigonometric polynomial S3(x) using
m = 4 for f(x) = ex cos(2x) on the interval [−π, π].

Solution: Given f(x) = ex cos(2x) when x is in [−π, π] and m = 4 is the nodes
we know that yj = f(xj) = exj cos(2xj) ∀ j = 0, 1, 2, 3, 4, 5, 6, 7.
where xj = −π + ( j

m
)π and general trigonometric polynomial is,

Sn(x) =
a0
2

+ an cos(nx) +

n−1∑
k=1

(ak cos(kx) + bk sin(kx)).

Put n = 3 we get,
S3(x) =

a0
2

+ a3 cos(3x) +

2∑
k=1

(ak cos(kx) + bk sin(kx)).

By expanding the summation we get,

S3(x) =
a0
2

+ a3 cos(3x) + a1 cos(x) + b1 sin(x) + a2 cos(2x) + b2 sin(2x). (26)

To find the a0, a1, a2, a3, b1 and b2 we have,

ak =
1

m

2m−1∑
j=0

yj cos(kxj) ∀ k = 1, 2, 3 . . . n. (27)

bk =
1

m

2m−1∑
j=0

yj sin(kxj) ∀ k = 1, 2, 3 . . . n. (28)

Putting k = 0, 1, 2, and3 in equation (27) then we get,

a0 = −0.4968928713

a1 = 0.2391965

a2 = 1.515392698

a3 = 0.2391965
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Putting k = 1and 2 in equation (28) then we have,

b1 = −1.15064947

b2 = 0

By substituting a0, a1, a2, a3, b1 and b2 in equation (26) we get,

S3(x) = −0.4968928713 + 0.2391965 cos(x) + 1.515392698 cos(2x)

+ 0.2391965 cos(3x)− 1.15064947 sin(x)

To find the error we have an formula such as,

E(S3) =

2m−1∑
j=0

(yj − S3(xj))
2,

where yj = f(xj) and by expanding the summation we get,

E(S3(x)) = [f(x1)
2 + (S3(x1))

2 − 2(f(x1)S3(x1))] + [f(x2)
2 + (S3(x2))

2 − 2(f(x2)S3(x2))]

+ [f(x3)
2 + (S3(x3))

2 − 2(f(x3)S3(x3))] + [f(x4)
2 + (S3(x4))

2 − 2(f(x4)S3(x4))]

+ [f(x5)
2 + (S3(x5))

2 − 2(f(x5)S3(x5))] + [f(x6)
2 + (S3(x6))

2 − 2(f(x6)S3(x6))]

+ [f(x7)
2 + (S3(x7))

2 − 2(f(x7)S3(x7))]

E(S3(x)) = 7.2711.

5 Conclusion
In this article we discussed about trigonometric polynomial approximation method which

is one of the very useful method to find the polynomial by using the given function and for the
specified interval. By using the Fourier series expression deriving the formula for continuous
and discrete least square approximation. We find the constant values and substituting back to
the formula and also to find the errors of the given function. We also considered some examples
to show trigonometric function is orthogonal with respect to weight function and for different
intervals we need to apply the Fourier transform.
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1 Introduction
The Hilbert transform, named after a German Mathematician David Hilbert, is one of the most
important integral transformations in the field of signal theory. Leonard Euler, in 1973, gave
the famous formula [1]

eix = cosx+ i sinx for x ∈ R

Using the above equation, C.P. Steinmetz and A.E. Kennely introduced the complex notation
of harmonic wave as

eiωt = cosωt+ i sinωt

But it was David Hilbert who showed that the function sinωt is the Hilbert transform of the
function cosωt, which led to the basic property of Hilbert transform, namely ±π

2
phaseshift.

Its first use dates back to Hilbert’s work concerning analytical function in connection to the
Riemann problem. G.H. Hardy and E.C. Titchmarsh have also worked extensively on the prop-
erties of Hilbert transform and developed it.

Definition of Hilbert transform and inverse Hilbert transform
Consider a function f(t) defined on the real line for t ∈ (−∞,∞), then the Hilbert transform
of f(t), denoted by f̂H(x), is defined as [2, 3]

H{f(t)} = f̂H(x) =
1

π

∞∮
−∞

f(t)

t− x
dt (1)

But the integral is improper and the integrand has a singularity at x = t. Thus we make use of
Cauchy Principal Value and define Hilbert transform of a function as follows

H{f(t)} =
1

π
lim
ε→0

 x−ε∫
∞

f(t)

t− x
dx+

∞∫
x+ε

f(t)

t− x
dx
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The Cauchy Principal Value is obtained by considering a finite range of integration which is
symmetric about the point of singularity, but does not include the symmetric sub interval. We
take the limit of the integral as the length of the interval approaches ∞ and the length of the
excluded interval approaches 0 [4, 5, 6].

The inverse of Hilbert transform denoted by H−1{f̂H(x)} is defined as

f(t) = − 1

π

∞∫
−∞

f̂H(x)

x− t
dx (2)

We can also observe H−1 = −H , in other words the inverse Hilbert transform of f(t) is
obtained by applying the Hilbert transform to f̂H(x) and neglecting the result.

2 Properties of Hilbert Transforms

Theorem 1 (Linearity Property). Let f1(t) and f2(t) be two function then

H{c1f1(t) + c2f2(t)} = c1H{f1(t)}+ c2H{f2(t)}

where c1, c2 are constants. [7]

Proof. By using the Cauchy Principal Value definition of the Hilbert transform, we have

H{c1f1(t) + c2f2(t)} = lim
ε→0

 1

π

−x+ε∫
−x−ε

c1f1(t) + c2f2(t)

t− x
dt


= c1 lim

ε→0

 1

π

−x+ε∫
−x−ε

f1(t)

t− x
dt

+ c2 lim
ε→0

 1

π

−x+ε∫
−x−ε

f2(t)

t− x
dt


= c1H{f1(t)}+ c2H{f2(t)}

Theorem 2 (Derivatives of Hilbert transform ). The Hilbert transform of the derivative of a
function f(t) is equal to the derivative of the Hilbert transform of a function i.e. H{f ′(t)} =
d

dx
f̂H(x).

Proof. By the definition of Hilbert transform, we have

f̂H(x) =
1

π

∞∮
−∞

f(t)

t− x
dt

=
1

π

∞∮
−∞

f(u+ x)

u
du

(
Substituting t = u+ x

)

Differentiating with respect to x on both sides, we get

d

dx

(
f̂H(x)

)
=

1

π

∞∮
−∞

f
′
(u+ x)

u
du
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=
1

π

∞∮
−∞

f
′
(t)

t− x
dt

(
Substituting u = t− x

)
= H{f ′(t)}

Theorem 3. Let H{f(t)} = f̂H(x) then H{f(at)} = f̂H(ax), a > 0.

Proof. Using the Hilbert transform definition we have,

H{f(at)} =
1

π

∞∮
−∞

f(at)

t− x
dt

=
1

π

∞∮
−∞

f(au)

u− ax
du

(
Substituting at = u

)
= f̂H(ax)

Theorem 4. Let H{f(t)} = f̂H(x) then H{f(−at)} = −f̂H(−ax), a > 0.

Proof. Using the Hilbert transform definition we have,

H{f(−at)} =
1

π

∞∮
−∞

f(−at)
t− x

dt

= − 1

π

∞∮
−∞

f(au)

u+ ax
du

(
Substituting − at = u

)
= −f̂H(−ax)

Theorem 5 (Convolution Theorem). Let f and g be two real valued functions then

1. H(f ∗ g)(x) = (Hf ∗ g)(x) = (f ∗H(g))(x)

2. (f ∗ g)(x) = −(Hf ∗H(g))(x)

Proof. 1. Using the definitions of Hilbert transform and Inverse Hilbert transform, we get

H(f ∗ g)(x) =
1

π

1√
2π

∞∫
−∞

dt

t− x

 ∞∫
−∞

f(y)g(t− y)dy


Substituting t− y = u the above equation reduces to

H(f ∗ g)(x) =
1

π

1√
2π

∞∫
−∞

f(y)dy

[
g(u)du

u− (x− y)

]
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=
1√
2π

∞∫
−∞

f(y)(H(g))(x− y)dy

= (f ∗H(g))(x)

=
1

π

1√
2π

∞∫
−∞

g(y)dy

[
f(u)du

u− (x− y)

]

=
1√
2π

∞∫
−∞

g(y)(H(f))(x− y)dy

= (Hf ∗ g)(x)

2. Replace g as H(g) and H(H(g)) = −g becomes,

H(f ∗ g)(x) =
1

π

1√
2π

∞∫
−∞

 ∞∫
−∞

f(y)H(g)(t− y)dy


Substituting (t− y) = u the above equation reduces to

H(f ∗ g)(x) =
1

π

1√
2π

∞∫
−∞

f(y)dy

[
H(g)(u)du

u− (x− y)

]

=
1√
2π

∞∫
−∞

f(y)(−g)(x− y)dy

= −(H(f) ∗H(g))(x)

Theorem 6 (Inversion Theorem). Suppose x(t) ∈ Lp(R), 1 < p ≤ 2 thenH{H{x(t)}}−x(t).

Proof. Using the definition of Hilbert transform twice, we get,

F{H{H{x(t)}}} = (−isgn(f))(−isgn(f))f(x(t))

= i2(sgn(f))2F{x(t)}
= F{−x(t)}

where F is the Fourier transform operator s. Since H{H{x(t)}} and −x(t) have the same
Fourier transform, we can conclude that H{H{x(t)}} = −x(t)

The Hilbert Transform of Strong Analytic Signals
A complex signal whose imaginary part is Hilbert transform of its real part is called analytic
signal. The Hilbert transform of a strong analytic signal is given by z(t) = (f(t) + if̂(t)),
where f(t) and f̂(t) are real valued functions and f̂(t) = H{f(t)} [3, 8].

Then H{z(t)} = H{f(t) + if̂(t)}
= H{f(t) + iH{f̂(t)}
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= f̂(t)− if(t)
(

SinceH(H(f(t))) = H−1
)

= −i(f(t)− if̂(t))

= −iz(t) (3)

Theorem 7. The product of H{z1(t)}z2(t) is identical with the product of z1(t)H{z2(t)} if
z1(t) and z2(t) are strong analytic signals.

Proof. Suppose z1(t) and z2(t) are strong analytic signals, then

H{z1(t)}z2(t) =
(
f̂1(t)− if1(t)

)
z2(t)

(
Using equation (3)

)
= −i

(
f1(t) + if̂1(t)

)
z2(t)

= −i z1(t) z2(t)
= z1(t) (−i)(z2(t))

= z1(t)
(
f̂2(t)− if2(t)

)
= z1(t)H{z2(t)}

(
Using the equation (3)

)

Theorem 8. The product of z1(t)z2(t) is identical with the product of iH{z1(t)}z2(t) and
iz1(t)H{z2(t)} if z1(t) and z2(t) are strong analytic signals.

Proof. Suppose z1(t) and z2(t) are strong analytic signals, then

z1(t)z2(t) =
(
f1(t) + if̂1(t)

)
z2(t)

= i
(
f̂1(t)− if1(t)

)
z2(t)

= iH{z1(t)}z2(t)
(

Using the equation (3)
)

(4)

Also z1(t)z2(t) = z1(t)
(
f2(t) + if̂2(t)

)
= z1(t)i

(
f̂2(t)− if2(t)

)
= iz1(t)H{z2(t)} (5)

From the equation (4) and (5) we get,

iH{z1(t)}z2(t) = iz1(t)H{z2(t)}

3 Examples on Hilbert transforms

Example 1: Find the Hilbert transforms of the following functions:
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(i) f(t) = 1

(iii) f(t) = sinωt

(ii) f(t) =
t

(t2 + a2)
, a > 0

(iv) f(t) = exp(iat), a > 0

(i) Using the Cauchy Principal Value definition of the Hilbert transform we have,

H{1} =
1

π
lim
R→0

 x−R∫
−∞

1 dt

t− x
+

∞∫
x+R

1 dt

t− x


= lim

R→0

log

−
(

1− x

R

)
(

1 +
x

R

)



= log(−1)

=iπ

Considering the real part of the above expression, we have H{1} = 0.

Thus H{c} = 0 for any constant c.

(ii) By the definition of the Hilbert transform we have,

f̂H(x) =
1

π

∞∮
−∞

t dt

(t2 + a2)(t− x)
(6)

Let
t

(t2 + a2)(t− x)
=

A

(t− x)
+

Bt+ C

(t2 + a2)

On solving, we get the values of A,B and C as

A =
x

(x2 + a2)
, B =

−x
(x2 + a2)

and C =
a2

(x2 + a2)

Substituting these values equation (6) becomes

f̂H(x) =
1

π

1

(a2 + x2)

a2 ∞∮
−∞

dt

(t2 + a2)
+ x

∞∮
−∞

dt

(t− x)
− x

∞∮
−∞

tdt

(t2 + a2)


=

a

(a2 + x2)

(iii) By the definition of the Hilbert transform we have,

f̂H(x) =
1

π

∞∫
−∞

sin{ω(t− x) + ωx}
(t− x)

dt

=
cosωx

π

∞∫
−∞

sinω(t− x)

(t− x)
dt+

sinωx

π

∞∫
−∞

cosω(t− x)

(t− x)
dt
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Substituting t− x = U in the above expression we get

f̂H(x) =
cosωx

π

∞∫
−∞

sinωU

U
dU +

sinωx

π

∞∫
−∞

cosωU

U
dU

= cosωx

(iv) By the definition of the Hilbert transform we have,

f̂H(x) =
1

π

∞∫
−∞

eiat

t− x
dt

=
1

π

∞∫
−∞

cos at

(t− x)
dt+

i

π

∞∫
−∞

sin at

(t− x)
dt

=i

(
cos ax− sin ax

i

)
=i(eiax)

Example 2: Find the inverse Hilbert transforms of the following functions:

(i) f(x) =
a

(a2 + x2)
, a > 0

(iii) f(x) = i(eiax) , a > 0

(ii) f(x) = cosωx

(i) Using the definition of inverse Hilbert transform, we have

H−1
{

a

a2 + x2

}
=
−1

π

∞∮
−∞

a

(a2 + x2)(x− t)
dx (7)

Let
a

(a2 + x2)(x− t)
=

A

(x− t)
+

Bx+ C

(a2 + x2)

On solving, we get the A,B and C values as

A =
a

(a2 + t2)
, B =

−a
(a2 + t2)

and C =
−at
a2 + t2

Substituting these equation (7) becomes,

H−1{f̂H(x)} =
−1

π

a

(a2 + t2)

 ∞∮
−∞

dx

(x− t)
−

∞∫
−∞

xdx

(a2 + x2)
− t

∞∫
−∞

dx

(a2 + x2)


=

t

(a2 + t2)
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(ii) Using the definition of inverse Hilbert transform, we have

H−1{f̂H(x)} =
−1

π

∞∫
−∞

cos{ω(x− t) + ωt}
(x− t)

dx

=
− cosωt

π

∞∫
−∞

cosω(x− t)
(x− t)

dx− sinωt

π

∞∫
−∞

sinω(x− t)
(x− t)

dx

Substituting x− t = U in the above expression becomes,

H−1{f̂H(x)} =
− cosωt

π

∞∫
−∞

cosωU

U
dU +

sinωt

π

∞∫
−∞

sinωU

U
dU

= sinωt

(iii) Using the definition of inverse Hilbert transform, we have

H−1{f̂H(x)} =
−1

π

∞∮
−∞

i
(eiax)

(x− t)
dx

=
−i
π

∞∫
−∞

cos ax

(x− t)
dx− i2

π

∞∫
−∞

sin ax

(x− t)
dx

= exp(iat)

4 Applications of Hilbert Transforms
Hilbert transform is widely used in signal processing. It has wide variety of applica-

tion in Fluid mechanics, aerodynamics and electronics. It plays an important role in electro-
cardiography, Hilbert-Huang transform is a popular method for spectral analysis for non-linear
and non-stationary process and modulation [9, 10].

Applying the Hilbert Transforms to Boundary Value Problems
Solve the Laplace equation

uxx + uyy = 0 where −∞ < x <∞ and y > 0

with the boundary conditions

ux(x, y) = f(x) on y = 0, for −∞ < x <∞
u(x, y)→ 0 as r = (x2 + y2)

1
2 →∞

The Fourier transform is defined by

F{f(x)} = F (s) =
1√
2π

∞∫
−∞

e−isxf(x)dx
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where F is called Fourier transform operator gives the solution for U(s, y) as

U(s, y) =
F (s)

is
exp(−|s|y)

= F (s)G(s)

where G(s) = (is)−1 exp(−|s|y)

So that g(x) =

√
2

π
tan−1

(x
y

)
Using the Convolution theorem the solution is obtained as,

u(x, y) =
1√
2π

∞∫
−∞

f(t)g(x− t)dt

=
1

π

∞∫
−∞

f(t) tan−1
(x− t

y

)
dt (Since y = 0)

uy(x, 0) =
1

π

∞∫
−∞

f(t)

t− x
dt

= H{f(t)}

Thus, the Hilbert of the tangential derivative ux(x, 0) = f(x) is the normal derivative uy(x, 0)
on the boundary at y = 0.

5 Results and Discussions
In this paper we have studied the definition of Hilbert transform and solved a few basic

properties and examples on Hilbert transform. We also learnt about analytic signals and how to
find the Hilbert transform of an analytic signal. Application of Hilbert transform to Boundary
Value Problem was studied with an example.
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