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Study of Fluid Flows in Forced Convection using DTM-Padé
Approximation
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Abstract: The fluid flow equations of a viscous incompressible fluid past a thin semi-infinite
flat plate at a constant wall temperature are derived and solutions of these equations are in-
vestigated using DTM-Padé approximation. Velocity and temperature profiles are plotted.
The velocity profile in the laminar region is approximately parabolic and becomes flatter
in turbulent flow. The temperature of the fluid increases with the increasing heat genera-
tion parameter and the decreasing Prandtl number. The results obtained using DTM-Padé
approximation are compared using numerical solution for validation.

Keywords: Forced Convection, Thermal Boundary Layer, DTM-Padé Approximation.

AMS Subject Classification: 74A05, 76E06, 41A21.

1 Introduction

A boundary layer is a thin layer of viscous fluid close to the solid surface of a wall in contact
with a moving stream in which the flow velocity varies from zero at the wall up to U∞ at the
boundary, which approximately corresponds to the free stream velocity [1]. For heat transfer,
the boundary layer is known as thermal boundary layer and its thickness can be defined as the
distance at which fluid attains 99% of free stream temperature. A thermal boundary layer is
analogous to velocity boundary layer and is formed. When a fluid flows past a heated or cooled
bodies the heat is transferred by conduction, convection and radiation.

Heat transfer is complicated since it involves fluid motion as well as heat conduction [2].
The fluid motion enhances heat transfer (the higher the velocity the higher the heat transfer
rate) [3]. Convection is the circular motion that happens when warmer air or liquid-which has
faster moving molecules, making it less dense-rises, while the cooler air or liquid drops down.
Convection is a major factor in atmospheric weather.

Main purpose of convective heat transfer analysis is to determine flow field, temperature
field in fluid and heat transfer coefficients. In a forced convection, the Nusselt Number depends
on the rate of heat transfer through a boundary layer from a surface hotter or cooler than the
air passing over it, a process analogous to the transfer of momentum by skin friction [4]. The
Nusselt number is therefore expected to be a function of the Reynolds number modified by the
ratio of boundary layer thickness for heat(tH) and for momentum(tM). The ratio tH/tM is a
function of the Prandtl Number defined by (ν/κ).

Karvinen [5] presented an approximate method for calculating heat transfer from a flat plate
in forced flow and compared the results with experimental data and previous results obtained
in [6] for the case of combined convective heat exchange with the environment, conduction
in the plate and internal heat sources. Forced convection conjugate heat transfer in a laminar
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plane wall jet was considered by Kanna and Das [7]. A problem of conduction-convection in
fins [8, 9] and in cavities [5, 8] and the combined effect of conduction and radiation in a T-Y
shaped fin [10] are carried out in recent years.

2 Mathematical Formulation
Consider the steady flow of a viscous incompressible fluid past a thin semi-infinite flat plate

at a constant temperature Tw placed along the direction of a uniform stream of velocity U∞
and temperature T∞ [1]. Let the origin of co-ordinates be at the leading edge of the plate, the
x−axis along the plate and y−axis normal to it. Equations for two dimensional, laminar, steady
boundary layer flow are,

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+ v

∂2u

∂y2
, (2)

u
∂T

∂x
+ v

∂T

∂y
= a

∂2T

∂y2
+

µ

ρCp

(
∂u

∂y

)2

, (3)

where a =
k

ρCp
(Thermal Diffusivity).

In the present case, U(x) = U∞ (constant). Thus (2) reduces to,

u
∂u

∂x
+ v

∂u

∂y
= v

∂2u

∂y2
, (4)

with the boundary conditions,

y = 0;u = v = 0, T = Tw (Isothermal),
∂T

∂y
= 0 (Adiabatic),

y =∞;u = U∞, T = T∞.

(5)

2.1 Integrals of the Thermal Boundary Layer Equation with Prandtl Num-
ber of the Fluid (Pr = 1)

A simple integral of the equation (3) can be obtained immediately if the frictional heat is
neglected and the Prandtl number of the fluid is unity. In such cases the two equations are,

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
, (6)

u
∂T

∂x
+ v

∂T

∂y
= a

∂2T

∂y2
, (7)

with the boundary conditions,

y = 0;u = v = 0, T = Tw,
y =∞;u = U∞, T = T∞.

(8)
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When ν = a, we get Pr =
ν

a
= 1. Thus, equation (7) becomes identical to equation (6) with

boundary conditions if
T − Tw
T∞ − Tw

is replaced by
u

U∞
. Hence,

T − Tw
T∞ − Tw

=
u

U∞
, (or)

T − T∞
Tw − T∞

= 1− u

U∞
(Pr = 1). (9)

It is known as Crocco’s first integral. We can also write this as,

∂

∂y

(
u

U∞

)
=

∂

∂y

(
T − Tw
T∞ − Tw

)
. (10)

This shows that the heat-flux and the skin-friction are proportional to each other. To get the
exact relationship between the two, we write the value of the local Nusselt number, which is
given by,

Nu(x) = −
x

(
∂T

∂y

)
o

Tw − T∞
=

x

U∞

(
∂u

∂y

)
0

, (11)

Nu(x) =
x

µU∞
Tw =

x

µU∞

(
1

2
ρU2
∞Cf

)
. (12)

Thus,

Nu(x) =
1

2
RexCf ,

where Rex =
U∞x

ν
and ν =

µ

ρ
.

This is known as Reynold’s Analogy. If the frictional heat is not neglected but the wall is
insulated then another simple integral of equation (3) is possible again when Pr = 1. We have
T = T (u) then equation (3) can be written as,

u
dT

du

∂u

∂x
+ v

dT

du

∂u

∂y
= a

∂

∂y

[
dT

du

∂u

∂y

]
+

µ

ρCp

(
∂u

∂y

)2

,

(ν − a)Tu
∂2u

∂y2
=

[
aTuu +

µ

ρCp

](
∂u

∂y

)2

. (13)

Equation (13) will be identically satisfied. Thus T = T (u) will be the solution of equation (3)
if,

ν = a and Tuu = − µ

aρCp
,

Pr = 1 and Tuu = − ν

aCp

(
since ν =

µ

ρ

)
,

Tuu = − 1

Cp
(since ν = a),

where the constants of integration vanishes, since at y = 0, u = 0,
∂u

∂y
6= 0 and

∂T

∂y
= 0. That

implies Tu = 0. Integrating and using the boundary condition at infinity, that is u = U∞ and
T = T∞, we obtain, Tu = − u

Cp
,

[T ]TT∞ = −
[
u2

2Cp

]u
U∞

,

3



MES Bulletin of Applied Sciences Volume 2, Issue 2, 2019

T − T∞ = − 1

2Cp
[u2 − U2

∞] + constant,

T − T∞ = − u2

2Cp
+
U2
∞

2Cp
,

T − T∞ =
U2
∞

2Cp

[
1− u2

U2
∞

]
,

T − T∞
U2
∞/2Cp

= 1−
(
u

U∞

)2

[since Pr = 1]. (14)

This is known as Crocco’s second integral.

3 Integrals of the Thermal Boundary Layer Equation for ar-
bitrary values of the Prandtl Number (Pr)

For the solution of equation (3), we shall require the velocity distribution which was ob-
tained by Blasius and is as follows,

u = U∞φ
′(η),

v =
1

2

√
ν U∞
x

(nφ′(η)− φ(η)),
(15)

where η = y
√

U∞
ν x

is the similarity variable. We have,

u
∂u

∂y
+ v

∂u

∂y
= ν

∂2u

∂y2
,

U2
∞
x
φ′′′(η) +

U2
∞

2x
φ′′(η)φ(η) = 0,

2φ′′′ + φφ′′ = 0. (16)

The function φ(η) satisfies the above differential equation with the boundary conditions,

η = 0 : φ = φ′ = 0,

η =∞ : φ′ = 1.
(17)

In order to obtain a complete integral of equation (3) for an isothermal wall, it will be easier
to calculate first the solution of it when the dissipation term is neglected, i.e. the solution of
the cooling problem with a prescribed value of (Tw − T∞) and then another solution when
the frictional heat is accounted but the wall is adiabatic, i.e. the problem of plate thermometer.
Since equation (3) is a linear differential equation, to get the complete integral, the two solutions
may then be properly superimposed.
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4 Solution of the Cooling Problem
Consider equation (7),

u
∂T

∂x
+ v

∂T

∂y
= a

∂2T

∂y2
, (18)

with the boundary conditions

y = 0 : T = Tw and y =∞ : T = T∞. (19)

We have,

θ1 =
T − T∞
Tw − T∞

,

T − T∞ = θ1(η)(Tw − T∞),

T = T∞ + θ1(η)(Tw − T∞).

(20)

Solution of equation (18) in which θ1 is a solution of the similarly variable η only or in other
words we look for a similar solution of θ1.
Differentiate equation (20) w.r.t. x,

∂T

∂x
= (Tw − T∞)θ′1(η)

∂η

∂x
,

∂T

∂x
= (Tw − T∞)θ′1(η)

[
−y
2x

√
U∞
ν x

]
[since from equation (15)]. (21)

Differentiate equation (20) w.r.t. y,

∂T

∂y
= (Tw − T∞)θ′1(η)

∂η

∂y
,

∂T

∂y
= (Tw − T∞)θ′1(η)

[√
U∞
ν x

]
. (22)

Differentiate equation (22) w.r.t. y,

∂2T

∂y2
= (Tw − T∞)θ′′′ (η)

U∞
ν x

. (23)

Substituting the values of equations (15), (21), (22), (23) in equation (18), we get

U∞φ
′(η)(Tw − T∞)θ′1(η)

(
−y
2x

)√
U∞
ν x

+
1

2

√
ν U∞
x

[ηφ′(η)− φ(η)] (Tw − T∞)θ′1(η)

√
U∞
ν x

= a(Tw − T∞)θ′′1(η)
U∞
ν x

.

Dividing throughout by
aU∞
ν x

,

−φ(η)θ′1(η)
ν

2a
= θ′′1(η),

θ′′1(η) = −1

2
φ(η)θ′1(η)

ν

a
.
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But
ν

a
= Pr.

θ′′1 +
Pr

2
φθ′1 = 0, (24)

with the boundary conditions

η = 0 : θ1 = 1, and η =∞ : θ′ = 0. (25)

From equation (24) we have

θ′′1 +
Pr

2
φθ′1 = 0,

θ′′1
θ1

= −1

2
Prφ,

θ′′1 +
Pr

2
φθ′1 = 0,

θ′′1
θ′1

= −1

2
Pr

[
−2φ′′′

φ′′

]
[since from equation (16)],

θ′′1
θ′1

= Pr

[
φ′′′

φ′′

]
. (26)

Integrating w.r.t. η, we get
θ′1
θ1

= Pr

[
φ′′

φ′

]
.

Integrating once again w.r.t. η, we get

logθ′1 = Prlogφ′′ + logA,

where A is the constant of integration.

logθ′1 = log(φ′′)Pr + logA,

log

(
θ′1
A

)
= log[φ′′]Pr,

θ′1
A

= [φ(η)]Pr,

θ′1 = A[φ′′(η)]Pr. (27)

Integrating equation (27) w.r.t. η from∞ to η, we get

θ1(η,Pr) = A

∫ η

∞
[φ′′(η)](Pr)dη,

A =
−θ1(η,Pr)∫∞
η

[φ′′(η)]Prdη
. (28)

Using the first boundary condition of equation (25), i.e. when η = 0, θ1 = 1,

A =
−1∫∞

0
[φ′′(η)]Prdη

, (29)
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Equating equations (28) and (29), we get

−θ′(η,Pr)∫∞
η

[φ′′(η)]Prdη
=

−1∫∞
0

[φ′′(η)]Prdη
,

θ1(η,Pr) =

∫∞
η

[φ′′(η)]Prdη∫∞
0

[φ′′(η)]Prdη
.

When the Prandtl number (Pr) of the fluid is unity, the above equation becomes

θ1 =
[φ′(η)]∞η
[φ′(η)]∞0

.

5 Results and Discussions

The velocity profiles for Pr=1 and temperature profile for varying Prandtl number is plotted
in graphs in Figures 1 and 2 respectively.The velocity profile in the laminar region is approxi-
mately parabolic and becomes flatter in turbulent flow. The temperature of the fluid increases
with the increasing heat generation parameter and the decreasing Prandtl number. In graphs
in Figure 3 results obtained using DTM-Padé approximation are validated using Runge-Kutta
Felhberg Method.

Pr=1

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

η

f'

DTM-Pade Solution for Forced Convection(Velocity)

Figure 1: Velocity profile in the laminar boundary layer with Pr = 1

7



MES Bulletin of Applied Sciences Volume 2, Issue 2, 2019

Pr=0.1
Pr=0.6
Pr=1.0
Pr=3

Pr=10

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

η

θ
DTM-Pade Solution for Force Convection(Temperature(θ))

Figure 2: Temperature distribution in the laminar boundary Layer for different Prandtl
numbers

0 1 2 3 4 5 6
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 

 

θ

η

 P r = 0 . 1
 P r = 0 . 6
 P r = 1 . 0
 P r = 3 . 0
 P r = 1 0 . 0

Figure 3: Numerical solution using Runge-Kutta-Fehlberg method
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Abstract: In this paper we learn about the governing equations of gas dynamics as expres-
sions of conservation that requires three fundamental quantities- mass, momentum and
energy; and also we expressed the Euler equation in differential form. Furthermore, we
will study about the second law of thermodynamics, equations of state for a perfect gas
and also derived the Prandtl-Meyer function. We also showed the Euler equations in case
of isothermal flow, also proved the conservation of mass and momentum for any arbitrary
control volume [a, b] in steady one-dimensional gas dynamics.

Keywords: Euler equation, Boyle’s law, Charles’ law, Expansion Fan, Prandtl Meyer func-
tion.

AMS Subject Classification: 76N15.

1 Introduction
We learnt that our entire universe is made up of matter which is anything that has mass

and occupies space and this matter exists in three states- solids, liquids and gases. These clas-
sifications are made on the basis of the arrangement of molecules in a system. Gases plays
an important role in our daily life when compared to solids and liquids because we can live
without food and water for some days but we can’t live without oxygen for few minutes, like
this there are so many reasons which leads to work on properties of gases and its applications
extends the effective use of gases in different fields, so we learn more about different types of
gases and how they are helpful for us.

Uses of gases in our daily life:
• Oxygen-for respiration purpose and in welding works.
• Carbon dioxide - used as anti-explosive in combination with other gases.
• Nitrogen-to create oxygen free environment.
• Acetylene - for gas welding.
• Natural gas-for cooking.
• Neon, Argon ,xenon in electric bulbs and tube lights.
• Sulfur dioxide for preservation of fruits and wine making.

1.1 Gas laws
In general gas laws are used to analyzes the behavior of gases when slight changes in

physical conditions like pressure, temperature or volume occurs and also gives the relation
between them. Now let us study some important gas laws.

1. Boyle’s law: In 1662 Robert Boyle introduced this law, It states that under a constant

temperature, pressure (P ) of the gas is inversely proportional to its volume (V ), V ∝ 1

P
.

11
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2. Charles’ law: In 1787 Jacques Charles introduced this law, It states that under a constant
pressure, temperature (T ) the gas is directly proportional to its volume (V ), V ∝ T .

3. Gay-Lussac’s law: In 1808 Joseph Gay-Lussac introduced this law it states that under
a constant volume, pressure of the gas is directly proportional to its temperature (T ),
P ∝ T .

4. Avogadro’s law: In 1811 Amedeo avogadro combined the conclusions of Dalton’s atomic
theory and Gay Lussac’s law to give another important gas law called the Avogadro’s
law this law states that at constant temperature and pressure, volume of gas constitutes
an equal number of molecules of that gas, V ∝ n. The number of molecules present in a
mole of any gas is called as Avagadro’s constant and its value is 6.022 ∗ 1023.

2 The differential form of Euler equation

2.1 Conservation of mass

Figure 1

Let W be a fixed sub region of D (W is independent of time ). The rate of change of mass in
W is given by,

d

dt
m(W, t) =

d

dt

∫
W

ρ(x, t)dV =

∫
W

∂ρ

∂t
(x, t)dV. (1)

Let the boundary of W be ∂W , which is assumed to be smooth. Let n be the unit outward
normal defined at points of ∂W and dA be the area element on ∂W . Where ρ·n denote the
mass flow rate per unit area and u·n be the volume flow rate across ∂W per unit area.

In figure 1, the mass which crossing the boundary ∂W per unit time is equal to the surface
integral of ρu·n over ∂W . We can exactly state the principle of conservation of momentum as:
The rate of increase of mass in W equal to the rate at which mass crossing ∂W in the inward
direction that is,

d

dt

∫
W

ρ dV = −
∫
∂W

ρu·n dA. (2)

It is an integral form of the law of conservation of mass. Using divergence theorem, this
statement can also be written mathematically as,∫

W

[
∂ρ

∂t
+ div(ρu)

]
dV = 0. (3)

12
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Since it holds good for all W , and it is equivalent to,

∂ρ

∂t
+ div(ρu) = 0. (4)

Equation (4) is the differential form of the law of conservation of mass, and it is also known as
the Continuity equation [1].

2.2 Balance of momentum

Figure 2

Let the path followed by a fluid particle be x(t) = (x(t), y(t), z(t)) then the velocity field is
given by,

u(x(t), y(t), z(t), t) = (x(t)ẋ, y(t)ẏ, z(t)ż). (5)

In notation form equation (5) can be written as,

u(x(t),t) =
dx
dt

(t). (6)

Equation (6) and the following calculations use standard Euclidean co-ordinates in space and
ignoring z for plane flow. Acceleration is given by,

a(t) =
d2

dt2
x(t) =

d

dt
u(x(t), y(t), z(t), t). (7)

Using chain rule equation (7) can be written as,

uz =
∂u
∂x
ẋ+

∂u
∂y
ẏ +

∂u
∂z
ż +

∂u
∂t
. (8)

Using notation we can write the equation (8) as,

a(t) =
∂u
∂x
, uy =

∂u
∂y
, uz =

∂u
∂z
, ut =

∂u
∂t
, (9)

and
u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)). (10)

Then we obtain,
a(t) = uux + vuy + wuz + ut, (11)

which can also be expressed as,
a(t) = ∂tu + u · ∇u, (12)

13
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where
∂tu =

∂u
∂t

and u · ∇ = u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (13)

We know that,
D

Dt
= ∂t + u · ∇. (14)

The material derivative that takes into account that the fluid is moving and that the positions
of fluid particle change with time.If f(x, y, z, t) is any function of position and time may be
scalar or vector, then by chain rule,

d

dt
f(x(t), y(t), z(t), t) = ∂tf + u.∇f =

Df

Dt
(x(t), y(t), z(t), t). (15)

For every continuum, there are two types of forces which are acting on a piece of material.
First,there are forces of stress, they acts on the piece material by forces across its surface by the
rest of the continuum. Second, there are external or body forces such as gravity or a magnetic
field, which exert a force per unit volume on the continuum. Later, we can examine the stresses
more generally, let us define an ideal fluid as one with the following property that for any
motion of the fluid there is a function p(x, t) which is the Pressure such that if surface S in the
fluid with a chosen unit normal n, the force of stress exerted across the surface S per unit area
at position x ∈ S at time t is p(x, t) n, that is given by,

Force across the surface S per unit area = p(x, t)n.

We observed that the force is in the direction n and that the force acts orthogonal to the
surface S, it means there are no tangential forces exists(see Figure 2). The physical relevance
of the notion (or mathematical theorems we deduce from it) must be checked by experiment.
As we shall see later, in ideal fluids many interesting real physical phenomenon are excluded. It
is clearly observed that the absence of tangential forces leading that there is no way for rotation
to start in a fluid, nor, if it is there at the beginning, to stop.However, here we can detect physical
trouble for ideal fluids because of the abundance of rotation in real fluids (near the oars of a
rowboat, in tornadoes, etc). If the region in the fluid at a particular instant of time t is W , then
the total force exerted on the fluid inside W by means of stress on its boundary is given by,

S∂W = force on W = −
∫
∂W

pn dA, (16)

Here negative sign indicates that n points outward. If e be any fixed vector in space, then
divergence theorem gives,

e · S∂W = −
∫
∂W

pe · ndA = −
∫
W

div(pe)dV = −
∫
W

(grad p) · e dV. (17)

Thus the total body force is,

B =

∫
w

(ρb) dV. (18)

Thus on any piece of fluid material, Force per unit volume = −grad p+ ρb.
By Newton’s second law (f = m × a) this lead to the differential form of the balance of
momentum,

ρ
Du
Dt

= −grad p+ ρ b [1]. (19)
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2.3 Conservation of Energy
For three-dimensional space conservation of mass and momentum equation involves four

equations or n dimensional space involves n+1 equations for ,because the equation forDu/Dt
is a vector equation composed of three scalar equations. However we have five functions: u, ρ
and p Thus one might suspect that to specify the fluid motion completely and another one
equation is needed. This is in fact true,and conservation of energy will supply the necessary
equation in fluid mechanics. This is more complicated situation for general continuum, and
issues of general thermodynamics would need to be discussed for a complete treatment. We
shall confine ourselves to two special cases here, and later we shall treat another case for an
ideal gas. For fluid a moving with velocity field u in a domain D, the kinetic energy contained
in a region W ∈ D is,

Ekinetic =
1

2

∫
w

ρ‖u‖2dV, (20)

where ‖u‖2 = (u2 + v2 +w2) is the square length of the vector function u. We assume that the
total energy of the fluid can be written as,

Etotal = Ekinetic + Einternal, (21)

where Einternal is the internal energy, which we cannot see on a macroscopic scale and derives
from the sources such as inter-molecular vibrations and inter molecular potentials. If energy
is pumped into the fluid or if we allow the fluid to do work, results change in Etotal. Using
the transport theorem the rate of change of kinetic energy of a moving portion Wt of fluid is
calculated as follows,

d

dt
Ekinetic =

d

dt

1

2

∫
Wt

ρ‖u‖2
 dV,

=
1

2

∫
Wt

ρ
D‖u2

Dt
dV,

=

∫
Wt

ρ

(
u·
(
∂u
∂t

+ (u·∇)u
))

dV. (22)

Here we use Euclidean coordinates in the following calculation,

1

2

D

Dt
‖u‖2 =

1

2

∂

∂t
(u2 + v2 + w2) +

1

2
u
∂

∂x
(u2 + v2 + w2)

+
1

2
v
∂

∂y
(u2 + v2 + w2) +

1

2
w
∂

∂z
(u2 + v2 + w2),

= u
∂u

∂t
+ v

∂v

∂t
+ w

∂w

∂t
+ u

(
u
∂u

∂x
+ v

∂v

∂x
+ w

∂w

∂x

)
+ v

(
u
∂u

∂y
+ v

∂v

∂y
+ w

∂w

∂y

)
+ w

(
u
∂u

∂z
+ v

∂v

∂z
+ w

∂w

∂z

)
,

1

2

D

Dt
‖u‖2 = u · ∂u

∂t
+ u · (u · ∇)u. (23)

This is the differential form of the law of conservation of energy [1].
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3 Equations of state for a perfect gas
In thermodynamics, macroscopic properties of a system are described by mechanical prop-

erties such as kinetic energy and velocity while the microscopic properties of that system de-
scribed by the thermodynamic properties such as internal energy and enthalpy. Some other
properties such as density and pressure are considered either mechanical or thermodynamic
properties. By using three thermodynamic properties such as volume, mass, and internal en-
ergy, thermodynamic state is defined while the other properties of thermodynamics can be
expressed as function of these three is called as equation of state. These are obtained as a
result of conservation on the microscopic levels, there are three equations of state which deter-
mines all the other equation of state. Assuming that due to direct collision the large number
of gas molecules get interacts. On the microscopic level conservation of momentum yields the
following equation of state is known as Ideal gas law.

p = ρRT, (24)

where R is the gas constant. Typical value R for a sea level air is given by,

R = 287N ·m/kg·K.

When a fluid satisfies the thermal equation of state then it is said to be thermally perfect. Again
we are assuming that only upon direct collision the large number of gas molecules interacts.
Conservation of energy yields the following Caloric equation of state on the microscopic level,

e = cvT, (25)

where the specific heat of gas at constant volume is denoted by cv, for this an equivalent ex-
pression can be written as,

h = cpT, (26)

where specific heat of gas at constant pressure is denoted by cp. The specific heats are assumed
to be constant and this constant is different for different gases, we have it for sea-level air as
cv = 717Nm/kg ·K and cp = 1, 004Nm/kg ·K. The fluid satisfying the equations (24), (25)
and (26) is called a perfect gas and gases which not satisfies are called as real gases. The ratio
of specific heat is given by,

γ =
cp
cv
. (27)

The equation which relates gas constant and specific heat is given by,

cv = R− cp, (28)

(or)

cp =
γR

(γ − 1)
, (29)

cv =
R

(γ − 1)
. (30)

Combination of equations (25), (26), (29) and (30) yields the equation of state.

P = (γ − 1)ρe = (γ − 1)

(
ρeT −

1

2
ρu2)

)
, (31)

P = (γ − 1)ρe = γρeT − γ
1

2
ρu2)− ρeT +

1

2
ρu2. (32)
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4 Entropy and the Second law of Thermodynamics
Entropy: In 1850, Rudolf Clausius introduced this concept, It is the measure of system’s ther-
mal energy per unit temperature which is not available for useful work. This entropy helps in
finding the measure of the probability of disorder of a macroscopic system. Using Boltzmann’s
relation entropy is given by,

S = k lnW. (33)

where k = 1.38× 10−23 is Boltzmann’s constant and W be the number of microscopic states.

Second law of thermodynamics: Second law of thermodynamics is the most fundamental law
in nature. In terms of entropy second law of thermodynamics can be stated as follows: The
total entropy of the universe never decreases. For a perfect gas the equation of state giving
specific entropy S as a function of specific internal energy and density is given by,

S = cv ln e−R ln ρ+ constant. (34)

Using perfect gas relation we can rewrite equation (30) as,

S = cv ln p− cp lnρ+ constant. (35)

Suppose the flow is homentropic, then equate equations (34) and (35) then we get,

p = (constant)ργ, (36)

p = (constant)ργ−1, (37)

p = (constant)ρ(γ−1)/2. (38)

For one dimensional flow, second law of thermodynamics can be stated as “Change in total
entropy in [a, b] in interval [t1, t2] ≥ net entropy passing through boundaries of [a, b] in time
interval [t1, t2]“. It can be mathematically expressed as follows,

b∫
a

[ρ(x, t2)s(x, t2)− ρ(x, t1)s(x, t1)]dx ≥ −
t2∫
t1

[ρ(b, t)u(b, t)s(b, t)− ρ(a, t)u(a, t)s(a, t)]dt,

(39)
where ρ(x, t)s(x, t) is the entropy per unit volume, s(x, t) is entropy per unit mass and
ρ(x, t)s(x, t)u(x, t) is the instantaneous entropy flux. Then,

S =

b∫
a

ρ(x, t)s(x, t)dx. (40)

Equation (40) is the total entropy in [a, b] at time t and

S =

t2∫
t1

ρ(x, t)u(x, t)s(x, t)dt. (41)

Equation (41) is the total entropy following past x in the time interval [t1, t2], and is known as
the total entropy flux.
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5 Different forms of Euler equations
Case 1: Derive the Euler equation for isothermal flow,

•
∂

∂t
ρ+

∂

∂x
(ρu) = 0,

•
∂

∂t
(ρu) +

∂

∂x
(ρ(u2 + a2)) = 0,

where a2 =

(
dp

dρ

)
T = RT = constant.

Solution: Consider a closed surfaceAwhich encloses the volume V entirely which is occupied
by the fluid. At position X the density of the fluid will be ρ at the time t, the mass of the
fluid enclosed by the surface at any instant is

∫
ρdV and the net rate at which mass is flowing

outwards across the surface is
∫
ρu·ndA, where δA and δV are elements of the enclosed volume

and the area of the surrounding surface and n be the unit outward normal then mass is conserved
in the absence of sources of fluid so we have,

d

dt

∫
ρdV = −ρu · ndA. (42)

By Divergence theorem, ∫ {
∂ρ

∂t
+∇·ρu

}
dV = 0. (43)

Equation (29) holds good for all volumes hence,

∂ρ

∂t
+∇ · ρu = 0. (44)

Euler equation of motion is given by,

D~q

Dt
= F − 1

ρ
∇P. (45)

External force F acting on the motion is neglected then,

D~q

Dt
= −1

ρ
∇P, (46)

ρ
D~q

Dt
= −∇P. (47)

~q = (u).
We know that,

D~u

Dt
=
∂u

∂t
+ (u · ∇)u. (48)

Equation (48) becomes,

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇P,

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∂p

∂x
,

18



MES Bulletin of Applied Sciences Volume 2, Issue 2, 2019

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∂p

∂ρ

∂ρ

∂x
.

Using
∂p

∂ρ
= a2 we obtain,

∂

∂t
(ρu) +

∂

∂x
(u2ρ) + a2

∂ρ

∂x
= u

(
∂ρ

∂t
+ ρ

∂ρ

∂x

)
+ u2

∂ρ

∂x
. (49)

We know the that continuity equation is,

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0. (50)

Substitute equation (50) in equation (49) then we have,

∂

∂t
(ρu) +

∂

∂x

(
ρ(u2 + a2)

)
= 0. (51)

Case 2: Write the isothermal Euler equation in the form of
∂u

∂t
+
∂f(u)

∂t
= 0 [2].

Solution: Euler equations for an isothermal flow is given by,

∂

∂t
(ρu) +

∂

∂x

(
ρ(u2 + a2)

)
= 0. (52)

where, a2 =

(
dp

dρ

)
T = RT = constant.

We know that,
∂

∂t
(ρ) +

∂

∂t
(ρu) = 0. (53)

From equations (52) and (53) we get,

∂u

∂t
+

1

ρ

∂

∂x

(
ρ(u2 + a2)

)
− u

ρ

∂(ρu)

∂x
= 0, (54)

1

ρ

∂

∂x

(
ρ(u2 + a2)

)
=

∂

∂x

(
1

ρ
· ρ(u2 + a2)

)
− ρ(u2 + a2)

∂

∂x

(
1

ρ

)
=
∂u2

∂x
+

(
u2

ρ

)
∂ρ

∂x
+

(
a2

ρ

)
∂ρ

∂x
, (55)

u

ρ

∂(ρu)

∂x
=

∂

∂x

(
u

ρ
· ρu
)
− ρu ∂

∂x

(
u

ρ

)
=
∂u2

∂x
+

(
u2

ρ

)
∂ρ

∂x
− u∂u

∂x
. (56)

Using equations (55) and (56) in equation (54) we get,

∂u

∂t
+
∂u2

∂x
+

(
u2

ρ

)
∂ρ

∂x
+

(
a2

ρ

)
∂ρ

∂x
− ∂u2

∂x
−
(
u2

ρ

)
∂ρ

∂x
+ u

∂u

∂x
= 0,
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∂u

∂t
+
a2

ρ

∂ρ

∂x
+ u

∂u

∂x
= 0,

∂u

∂t
+

∂

∂x

(
a2

ρ
· ρ
)

+
1

2

∂u2

∂x
= 0,

∂u

∂t
+
∂a2

∂x
+

∂

∂x

(
u2

2

)
= 0,

∂u

∂t
+
∂f(u)

∂x
= 0. [f(u) =

u2

2
].

Case 3: For any arbitrary control volume [a, b] in one-dimensional gas dynamics. Prove that,

• ρaua = ρbub,

• pa + ρau
2
a = pb + ρbu

2
b .

Solution:
(i) Conservation of mass for an one dimensional flow is stated as: Change in total mass in
[a, b] in time interval [t1, t2] = net mass passing through the boundaries of [a, b] in time interval
[t1, t2]. This statement can be mathematically expressed as,

b∫
a

[ρ(x, t2)− ρ(x, t1)]dx = −
t2∫
t1

[ρ(b, t)u(b, t)− ρ(a, t)u(a, t)]dt, (57)

where ρ(x, t) is the mass per unit volume, u(x, t) is the velocity and ρ(x, t)u(x, t) is the time

rate of flow at point x then
t2∫
t1

ρ(x, t)u(x, t)dt is the total mass flux through the surface x. By

the definition total mass entering through the point a is equal to the total mass passing through
the point b, Therefore the initial and final mass are equal. From equation (57) we get,

t2∫
t1

[ρ(b, t)u(b, t)− ρ(a, t)u(a, t)]dt = 0,

t2∫
t1

ρ(b, t)u(b, t)dt =

t2∫
t1

ρ(a, t)u(a, t)dt. (58)

Integrals in equation (58) are equal, then integrands are also equal.

ρ(b, t)u(b, t) = ρ(a, t)u(a, t). (59)

Here velocity and density are independent of time. Hence we can write equation (59) in notation
form as,

ρaua = ρbub. (60)

(ii) Conservation of momentum for an one dimensional flow is stated as, “Change in total
momentum in [a, b] in time interval [t1, t2] = net momentum flow through boundaries of [a, b]
in time interval [t1, t2]+ net momentum change due to pressure on boundaries of [a, b]”. This
statement can be expressed mathematically as follows,

b∫
a

[ρ(x, t2)u(x, t2)− ρ(x, t1)u(x, t1)]dx =−
t2∫
t1

[ρ(b, t)u2(b, t)− ρ(b, t)u2(b, t)]dt,
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= −
t2∫
t1

[p(b, t)− p(a, t)]dt. (61)

where ρ(x, t)u(x, t) is momentum per unit volume then
b∫
a

ρ(x, t)u(x, t)dxis the total momen-

tum in [a, b] and
t2∫
t1

p(x, t)dt is the total momentum change at x due to pressure in time interval

[t1, t2]. By the definition the momentum of flow at point a is equal to the momentum at b.
Hence the initial and final momentum are same. Therefore from equation (61) we can write,

−
t2∫
t1

[ρ(b, t)u2(b, t)− ρ(b, t)u2(b, t)]dt−
t2∫
t1

[p(b, t)− p(a, t)]dt = 0,

−
t2∫
t1

ρ(b, t)u2(b, t)dt+

t2∫
t1

ρ(b, t)u2(b, t)dt =

t2∫
t1

p(b, t)dt+

t2∫
t1

p(a, t)dt,

t2∫
t1

p(a, t)dt+

t2∫
t1

ρ(b, t)u2(b, t)dt =

t2∫
t1

p(b, t)dt+

t2∫
t1

ρ(b, t)u2(b, t)dt,

t2∫
t1

[p(a, t) + ρ(b, t)u2(b, t)]dt =

t2∫
t1

[p(b, t) + ρ.(b, t)u2(b, t)]dt. (62)

Since the integrals in equation (62) are equal then the integrands of those integrals are also
equal. Hence we can write,

p(a, t) + ρ(b, t)u2(b, t) = p(b, t) + ρ(b, t)u2(b, t). (63)

It is observed that momentum is independent of time then equation (63) can be expressed in
notation as,

pa + ρau
2
a = pb + ρbu

2
b . (64)

6 Expansion fan
When supersonic flow starts flowing towards itself then it undergoes the compression through

the shock and expansion of supersonic flow takes place when it flow out of itself. Both the pro-
cess are takes place through infinite expansion waves smoothly, this complete process is called
as expansion fan. This expansion fan consists of infinite number of Mach waves, where every
wave plays a prominent role in resulting the infinitesimal amount of deflection. Typical expan-
sion fan is shown in Figure 3, where supersonic flow turns outward by an angle of deflection θ.

Consider p1, T1 and M1 be the properties of the flow for upstream of the expansion fan or
flow before expansion, where p2, T2 and M2 for downstream of the expansion fan or flow after
expansion due to outward deflection angle θ. Since the process of expansion is continuous and
smooth between infinite Mach waves. Let us consider a wave across the upstream of velocity V
and Mach number M . Angle made by this Mach wave with upstream velocity vector is µ and
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dV be the velocity change brought by the Mach wave by turning through an angle dθ. Then
V + dV and M + dM are denoting the downstream velocity and downstream Mach number
respectively. We can use sin law for the following velocity triangle as show in Figure 4.

Figure 3: Expansion of supersonic wave Figure 4: Velocity triangle across a typical
Mach wave during supersonic expansion

V + dV

V
=

sin
(π

2
+ µ
)

sin
(π

2
− µ− dθ

) . (65)

But,
sin
(π

2
+ µ
)

= sin
(π

2
− µ

)
= cosµ, (66)

and
sin
(π

2
− (µ+ dθ)

)
= cos(µ+ θ) = cosµ cos dθ − sinµ sin dθ. (67)

Now we can write equation (65) as,

1 +
dV

V
=

cosµ

cosµ cos dθ − sinµ sin dθ
. (68)

By the approximating sin dθ ≈ dθ and cos dθ ≈ 1, Equation (68) will simplified to,

1 +
dV

V
=

cosµ

cosµ− dθ sinµ
, (69)

1 +
dV

V
=

1

1− dθ tanµ
. (70)

Since dθ tanµ < 1, and using expansion for x < 1,

1

1− x
= x+ x2 + x3 + ..., (71)

by neglecting higher order term, equation (69) can be written as,

1 +
dV

V
= 1 + dθ tanµ,

dθ =
dV/V

tanµ
+ · · · . (72)
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But we know that
µ = sin−1

1

M
then, tanµ = − 1√

M2 − 1
. (73)

Equation (72) becomes,

dθ =
√
M2 − 1

dV

V
. (74)

6.1 Prandtl-Meyer Function
For a positive change in dθ, results the change in volume dV which leads to expansion of

waves. Equation (74) holds good for small angles of compression where we get negative change
in volume dV , On integrating this formula for total expansion angle we get the downstream
Mach number.

θ2∫
θ1

dθ =

M2∫
M1

√
M2 − 1

dV

V
. (75)

Integrand in Mach number can be expressed as,

V = Ma. (76)

Taking ln on both sides and differentiating we get,

ln V = ln M + ln a, (77)
dV

V
=
dM

M
+
da

a
. (78)

Using isentropic relation, second term in the right hand side of equation (78) can be expressed
in terms of Mach number as, (a0

a

)2
=
T0
T

= 1 +
γ − 1

2
M2,

a = a0

(
1 +

γ − 1

2
M2

)−1/2
,

da

a
= −

(
γ − 1

2

)
M

(
1 +

γ − 1

2
M2

)−1
dM. (79)

Using equations (78) and (79) in equation (75) we get,
θ2∫
θ1

dθ =

M2∫
M1

√
M2 − 1(

1 +
γ − 1

2
M2

) dM
M

,

θ2 =

√
γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M2 − 1)− tan−1

√
M2 − 1,

θ = V (M), (80)
where,

V (M) =

√
γ + 1

γ − 1
tan−1

√
γ − 1

γ + 1
(M2 − 1)− tan−1

√
M2 − 1. (81)

Here V is called Prandtl-Meyer Function,

θ = V (M2)− V (M1). (82)

Therefore we can calculate deflection angle θ and upstream Mach number, by using these two
we can calculate downstream Mach number [3].
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7 Results and Discussions
We gained the knowledge about Ideal gas laws, gas dynamics or compressible flow and

governing equations of gas dynamics. In addition to that we learnt about conservation forms
of Euler equations and also to express them in differential form using governing equations. It
extends our knowledge from the identification of the state of a system to define an equation of
state by using three thermodynamic properties such as pressure, volume and internal energy and
also to express other properties in terms of these three. Now we can predict the probability of
inefficiency of an object by the knowledge of entropy which describes the disorder of that object
and also we can express it as a function of specific internal energy, density and Boltzmann’s
constant. We learnt how the entropy and second law of thermodynamics are related. It made
us to write the Euler equations for an isothermal flow and to express Euler equation in terms of
flux function. Study of expansion wave help us to understand the expansion and compression
of Mach wave. Knowledge of Prandtl-Meyer function help us to find downstream Mach wave
using angle of deflection θ.
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1 Introduction

The stagnation point flow in a plane was introduced by Hiemenz [1]. He considered a
two-dimensional stagnation point flow problem on a stationary plate and used similarity trans-
formation to reduce the Navier-stokes equation to nonlinear ordinary differential equations.
Since then, the idea to consider different aspect of the stagnation point flow problems has at-
tracted a lot of interest among researchers. Stagnation point flow has various applications like
the cooling of nuclear reactors during emergency shutdown, the cooling of electronic devices,
MHD generators and cooling of infinite metallic plates in a bath, hydrodynamic processes in
engineering applications, metallurgical processes, such as drawing, annealing and tinning of
copper wires [2, 3]. The hydromagnetic stagnation point flow and heat transfer have applica-
tions in boundary layer along material handling conveyers, aerodynamic extrusion of plastic
sheet and blood flow problems.

Pop et al. [4] studied the radiation effects on the flow of an incompressible viscous fluid
over a flat sheet near the stagnation point using Runge-Kutta method coupled with a shooting
technique. Khan et al. [5] and Gul et al. [6] used homotopy perturbation method to investigate
the effect of temperature dependent thermal conductivity and heat transfer from solids of rectan-
gular, cylindrical and spherical shapes. Ishak et al. [7] investigated the steady two-dimensional
MHD stagnation point flow towards the stretching sheet with variable surface temperature over
a vertical flat plate numerically using the Keller-box scheme. They discussed the effects of the
governing parameters on the flow field and heat transfer characteristics. Qi and Hong-Qing [8]
investigated the steady two dimensional MHD stagnation point flow towards a stretching sheet
with variable surface temperature. They obtained the analytic solution and convergence region
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using homotopy analysis method. Sharma and Singh [9] investigated the effect of thermal con-
ductivity and heat source/sink on flow of a viscous incompressible electrically conducting fluid
in the presence of uniform transverse magnetic field and variable free stream near a stagnation
point on a non-conducting stretching sheet, numerically using shooting method.

Hayat et al. [10] applied homotopy analysis method to obtain the analytical solutions of
two-dimensional MHD stagnation point flow of an incompressible micropolar fluid over a non-
linear stretching surface. Ali et al. [11] obtained the numerical solution of the steady MHD
mixed convection stagnation point flow of an incompressible, viscous and electrically conduct-
ing fluid using an implicit finite difference scheme, for both assisting and opposing flows. They
showed that dual solutions exist for a certain range of the buoyancy parameter in the case of
opposing flow. Mahapatra et al. [12] studied the effect of uniform transverse magnetic field on
the two dimensional stagnation point flow of an incompressible viscous electrically conducting
fluid over a stretching surface, when the surface is stretched in its own plane with a velocity
proportional to the distance from the stagnation point. Makinde and Charles [13] investigated
the hydromagnetic stagnation flow of an incompressible viscous, electrically conducting fluid,
towards a stretching sheet in the presence of axially increasing free stream velocity, numerically
using the Newton-Raphson shooting method along with fourth-order Runge-Kutta method.

Yian et al. [14] studied the steady two dimensional MHD stagnation point flow of a viscous
and electrically conducting fluid over a permeable stretching sheet and obtained the numerical
solution using an implicit finite difference scheme. Ali et al. [15] carried out a numerical in-
vestigation of the steady laminar two dimensional nonlinear MHD stagnation point flow and
heat transfer of an incompressible viscous fluid towards a stretching sheet, taking the effects of
induced magnetic field, viscous dissipation and radiation into consideration. Al-sudais [16] car-
ried out a numerical study using shooting method to investigate the effects of variable thermal
conductivity and heat source/sink on steady two dimensional radiative MHD boundary layer
flow of a viscous incompressible electrically conducting fluid in the presence of variable free
stream near a stagnation point on a non-conducting stretching sheet. Makinde [17] obtained
the hydromagnetic mixed convection stagnation point flow towards a vertical plate embedded
in a highly porous medium with radiation and internal heat generation using shooting technique
together with Runge-Kutta sixth order method.

Ibrahim et al. [18] employed shooting technique with Runge-Kutta fourth order method to
analyze the effect of magnetic field, Brownian motion and thermophoresis on stagnation point
flow and heat transfer due to a nanofluid towards a stretching sheet. Mohamed et al. [19]
considered the mathematical modeling for stagnation point flow over a stretching surface with
convective boundary conditions and obtained the numerical solution using shooting method.
Rasekh et al. [20] studied the steady two dimensional MHD stagnation point flow towards a
permeable stretching sheet with chemical reaction and obtained analytical solutions using op-
timal homotopy asymptotic method. Makinde et al. [21] analyzed the combined effects of
buoyancy force, convective heating, Brownian motion, thermophoresis and magnetic field on
stagnation point flow and heat transfer due to nanofluid flow towards a stretching sheet, nu-
merically using Runge-Kutta fourth order method with shooting technique. Akbar et al. [22]
studied the two dimensional tangent hyperbolic fluid flow towards a stretching sheet with a
magnetic field numerically using fourth-fifth order Runge-Kutta Fehlberg method.

Akbar et al. [23] also determined the numerical solutions of the steady MHD two dimen-
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sional stagnation point flow of an incompressible nanofluid towards a stretching cylinder, taking
the effects of radiation and convective boundary conditions into account. Shateyi and Makinde
[24] studied the steady stagnation point flow and heat transfer of an electrically conducted in-
compressible viscous fluid over a convectively heated and radially stretching disk surface in
the presence of an external uniform magnetic field perpendicular to the plane of the disk. They
obtained the numerical solutions using a spectral relaxation method with a Chebyshev spec-
tral collocation method. Ramesh et al. [25] analyzed the effect of radiation on the flow near
the two-dimensional stagnation point of an incompressible, viscous, electrically conducting
dusty fluid towards stretching sheet numerically using Runge-Kutta Fehlberg fourth-fifth order
method. Nadeem et al. [26] studied numerically the effects of MHD, elasticity and nanoparti-
cles on the two dimensional boundary layer flow and the heat transfer of a Maxwell fluid past
a stretching sheet.

Seini and Makinde [27] investigated the MHD boundary layer flow of viscous, incom-
pressible and electrically conducting fluid near a stagnation point on a vertical surface with
slip numerically using shooting method. Hajmohammadi et al. [28] discussed the flow and
heat transfer of Cu-water and Ag-water nanofluids over a permeable flat plate with convec-
tive boundary conditions. Ibrahim and Makinde [29] studied the problem of double-diffusion
on boundary layer flow and heat transfer induced due to a nanofluid over a stretching vertical
sheet. They obtained the numerical solution using Keller-box finite difference scheme. Farooq
et al. [30] investigated the effects of nonlinear thermal radiation, heat transfer, Brownian mo-
tion and thermophoresis on the MHD stagnation point flow of a viscoelastic nanofluid towards
a stretching surface. Ibrahim and Haq [31] obtained the numerical solution of MHD stagnation
point flow past a stretching sheet with convective heating and zero normal flux condition of
nanoparticles at the wall. Khan et al. [32] studied the effects of chemical reaction on MHD
stagnation point flow, heat and mass transfer of a Casson liquid past a stretched surface numer-
ically using shooting method.

Bhatti et al. [33] used a combination of successive linearization method and Chebyshev
spectral collocation method to study the effects of MHD and heat transfer on the stagnation
point flow over a permeable stretching/shrinking sheet through porous media. Bhatti and
Rashidi [34] also investigated the effect of entropy generation on the MHD stagnation point
flow of a nanofluid over a permeable stretching surface using the same method. Agbaje et al.
[35] investigated the MHD stagnation point flow and heat transfer from a stretching sheet in the
presence of a heat source/sink and suction/injection in porous media, numerically using spectral
perturbation method. They compared their results with those obtained using spectral quasilin-
earization method. Narayana et al. [36] examined the effects of viscous dissipation, joule
heating, Brownian motion and thermophoresis on the MHD stagnation point flow of an incom-
pressible viscoelastic nanofluid over a convectively heated stretching surface. Besthapu et al.
[37] obtained a numerical solution of the MHD stagnation point flow of a Casson nanofluid
past a convectively nonlinear stretching surface in porous medium using Keller box method.
They studied the combined effects of thermal radiation and velocity slip on the flow. Ismail et
al. [38] investigated the unsteady stagnation point flow and heat transfer past a shrinking sheet
in the presence of suction and viscous dissipation.

In the year 1909, Alfred Haar, a Hungarian mathematician introduced Haar function which
were later known as Haar wavelets. His contribution to wavelets is very evident. There is an
entire wavelet family named after him. The Haar wavelet is a sequence of rescaled “square-
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shaped” functions which together form a wavelet family or basis. They consist of piecewise
constant functions and are therefore the simplest orthonormal wavelets with a compact support.
An advantage of these wavelets is the possibility to integrate them analytically for arbitrary
times. They are conceptually simple, fast, memory efficient and exactly reversible [39].

Lepik [41] solved ordinary and partial differential equations using Haar wavelet techniques.
Yousefi [42] obtained the numerical solution of the Lane-Emden equations by converting these
equations into integral equations using the integral operator and then applied the Legendre
wavelets to convert the integral equations to algebraic equations. The algebraic equations are
then solved using Gaussian integration method. Hsiao and Wu [43] used Haar wavelets to an-
alyze time-varying functional differential equations. Bujurke et al. [44] solved elliptic bound-
ary value problems arising in mathematical physics using Daubechies wavelet based multigrid
technique. Lepik [45] presented the solution of higher order linear and nonlinear differential
equations, both initial and boundary value problems, using Haar wavelets. Lepik [46] de-
termined the solution of integral and differential equations using non-uniform Haar wavelets.
Chang and Piau [47] used Haar wavelets to find the numerical solution of ordinary differential
equations with constant and variable coefficients. Bujurke et al. [48] computed the eigenvalues
and solutions of Sturm-Liouville eigenvalue problems using truncated Haar wavelet series.

Bujurke et al. [49] used single-term Haar wavelet series approach to obtain the solution of
nonlinear stiff differential equations encountered in nonlinear dynamics. Bujurke et al. [50]
also determined the solution of Duffing equation and Painleve’s transcendents using single-
term Haar wavelet series. Haq and Ali [51] obtained the numerical solution of multi-point
fourth-order boundary value problems using uniform Haar wavelets. They compared their re-
sults with those determined using homotopy analysis method, differential transform method,
Adomian decomposition method and homotopy perturbation method. Mohammadi and Hos-
seini [52] used Legendre wavelets to solve linear and nonlinear singular ordinary differential
equations. Shi and Cao [53] computed the solution of eigenvalue problems of high-order or-
dinary differential equations using Haar wavelets. Khalid et al. [54] obtained the numerical
solution of Airy differential equations using Haar wavelet method. Reddy et al. [55, 56] solved
seventh and eighth order differential equations using Haar wavelets. Sumana et al. [57, 58, 59]
determined the solution of non-homogeneous, non-planar and time-delayed Burgers’ equations
numerically using Haar wavelets.

In this chapter, we have studied the MHD stagnation point flow and heat transfer in porous
media and obtained the numerical solutions using Haar wavelet collocation method.

2 Haar Wavelets

The Haar wavelet family [39] for x ∈ [0, 1] is defined as follows,

hi(x) =


1 for x ∈ [ξ1, ξ2),

−1 for x ∈ [ξ2, ξ3),

0 elsewhere,

(1)
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where
ξ1 =

k

m
, ξ2 =

k + 0.5

m
, ξ3 =

k + 1

m
. (2)

In the above definitionm = 2d, d = 0, 1, ..., J indicates the level of the wavelet; k = 0, 1, ...,m−
1 is the translation parameter. J is the maximum level of resolution. The index i in equation
(1) is calculated by the formula i = m + k + 1. In the case of minimum values m = 1, k = 0
we have i = 2. The maximum value of i is i = 2N = 2J+1. For i = 1 , h1(x) is assumed to be
the scaling function which is defined as follows.

h1(x) =

1 for x ∈ [0, 1),

0 elsewhere.
(3)

In order to solve differential equations of any order, we need the following integrals,

pi(x) =

∫ x

0

hi(x)dx =


x− ξ1 for x ∈ [ξ1, ξ2),

ξ3 − x for x ∈ [ξ2, ξ3),

0 elsewhere,

(4)

qi(x) =

∫ x

0

pi(x)dx =



(x− ξ1)2

2
for x ∈ [ξ1, ξ2),

1

4m2
− (ξ3 − x)2

2
for x ∈ [ξ2, ξ3),

1

4m2
for x ∈ [ξ3, 1],

0 elsewhere,

(5)

ri(x) =

∫ x

0

qi(x)dx =



(x− ξ1)3

6
for x ∈ [ξ1, ξ2),

x− ξ2
4m2

− (ξ3 − x)3

6
for x ∈ [ξ2, ξ3),

x− ξ3
4m2

for x ∈ [ξ3, 1],

0 elsewhere.

(6)

2.1 Function approximation
Any function f(x) which is square integrable on [0, 1) can be expressed as an infinite sum

of Haar wavelets as

f(x) =
∞∑
i=1

aihi(x), (7)

where

ai =

∫ 1

0

f(x)hi(x)dx. (8)
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If f(x) is approximated as piecewise constant in each subinterval, then equation (7) will be
terminated at finite terms, i.e.

f(x) =
2N∑
i=1

aihi(x), (9)

where the wavelet coefficients ai, i = 1, 2, . . . , 2N are to be determined.

3 Formulation of the Problem

Consider the steady, two-dimensional MHD flow and heat transfer in porous media from an
incompressible electrically conducting fluid in the neighbourhood of the stagnation point on a
heated stretching surface with free stream velocity U∞(x), uniform ambient temperature T∞,
stretching velocity Uw(x) and surface temperature Tw(x).

U∞(x) = bx,

Uw(x) = ax,

Tw(x) = T∞ + cxn,

(10)

where a > 0, b ≥ 0, c > 0 and n are constants. A uniform magnetic field of strength B0

is applied in the positive y-direction normal to the stretching sheet. The magnetic Reynolds
number is assumed to be small, and thus the induced magnetic field is negligible. The flow
model is shown in Figure 1.

Figure 1: Flow Diagram.

The simplified boundary layer equations governing the flow and heat transfer are,

∂u

∂x
+
∂v

∂y
= 0, (11)

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞
dx

+ ν
∂2u

∂y2
+
σB2

0

ρ
(U∞ − u)− ν

K
u, (12)
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u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

Q

ρCp
(T − T∞), (13)

subject to boundary conditions,

u = Uw(x), v = Vw(x), T = Tw(x), at y = 0,

u→ Uw(x), T → T∞ as y →∞,

}
(14)

where,
∗ u, v are velocity component along x, y respectively,
∗ T is the fluid temperature,
∗ ν is the kinematic viscosity,
∗ ρ is the fluid density,
∗ σ is the electrical conductivity,
∗ α is the thermal diffusivity,
∗ K is the constant permeability of the porous media,
∗ Cp is the specific heat at constant pressure,
∗ Q represents the temperature-dependent heat source/sink with Q > 0 for source and
Q < 0 for sink, and
∗ Vw(x) is the mass flux velocity with Vw(x) < 0 for suction and Vw(x) > 0 for injection.

Introduce a stream function ψ such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (15)

which automatically satisfies the continuity equation (11).
The momentum (12) and energy (13) equations can be transformed into the corresponding
nonlinear ordinary differential equations by the following similarity transformation.

η = y

√
a

ν
,

ψ = x
√
aνf(η),

θ(η) =
T − T∞
Tw − T∞

,


(16)

where η is the independent similarity variable.
The mass flux velocity Vw(x) is assumed in the form,

Vw(x) = −S
√
aν (17)

where S is the constant mass flux with S > 0 for suction and S < 0 for injection.
Form equations (16), we have

u = axf ′(η), (18)

v = −
√
aνf(η), (19)

T = cxnθ(η) + T∞, (20)
∂u

∂x
= af ′(η), (21)

∂u

∂y
= a

√
a

ν
xf ′′(η), (22)
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∂2u

∂y2
=
a2

ν
xf ′′′(η), (23)

∂T

∂x
= cnxn−1θ(η), (24)

∂T

∂y
= c

√
a

ν
xnθ′(η), (25)

∂2T

∂y2
=
ac

ν
xnθ′′(η). (26)

Substituting equations (18)-(26) in equations (12)-(14), we get

f ′′′(η) + f(η)f ′′(η)− f ′2(η)− (M + Ω)f ′(η) + ε(ε+M) = 0, (27)

1

Pr
θ′′(η) + f(η)θ′(η) + (γ − nf ′(η)) θ(η) = 0, (28)

subject to boundary conditions,

f(0) = S, f ′(0) = 1, f ′(∞) = ε,

θ(0) = 1, θ(∞) = 0,

}
(29)

where,

� M =
σB2

0

ρa
is the magnetic parameter,

� Ω =
ν

Ka
is the permeability parameter,

� ε =
b

a
is the velocity ratio parameter,

� Pr =
ν

α
is the Prandtl number, and

� γ =
Q

aρCp
is the dimensionless heat generation/absorption coefficient.

4 Method of Solution
In this section, the description of the Haar wavelet collocation method to solve equations

(27)-(29) is outlined.
The order of the ODE (27) is 3 w.r.t. η. Therefore the Haar Wavelet solution is assumed to be
in the form,

f ′′′(η) =
2N∑
i=1

aihi(η). (30)

Integrating equation (30) w.r.t. η in the limits [0, η] gives

f ′′(η) = f ′′(0) +
2N∑
i=1

aipi(η). (31)

Integrating equation (31) w.r.t. η in the limits [0, η] and using the conditions in (29) leads to

f ′(η) = 1 + ηf ′′(0) +
2N∑
i=1

aiqi(η). (32)
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Integrating equation (32) w.r.t. η in the limits [0, η] and using the conditions in (29), we arrive
at

f(η) = S + η +
1

2
η2f ′′(0) +

2N∑
i=1

airi(η). (33)

Putting η = L in equation (32) and using the conditions in (29), where L is sufficiently large
integer, we get

f ′′(0) =
ε− 1

L
− 1

L

2N∑
i=1

aiqi(L). (34)

Substituting equation (34) in equations (31)-(33), we obtain

f ′′(η) =
ε− 1

L
+

2N∑
i=1

ai

[
pi(η)− 1

L
qi(L)

]
, (35)

f ′(η) = 1 +

(
ε− 1

L

)
η +

2N∑
i=1

ai

[
qi(η)− η

L
qi(L)

]
, (36)

f(η) = S + η +

(
ε− 1

2L

)
η2 +

2N∑
i=1

ai

[
ri(η)− η2

2L
qi(L)

]
. (37)

Similarly, the order of the ODE (28) is 2 w.r.t. η and hence the Haar Wavelet solution is taken
in the form,

θ′′(η) =
2N∑
i=1

bihi(η). (38)

Integrating equation (38) w.r.t. η in the limits [0, η] gives

θ′(η) = θ′(0) +
2N∑
i=1

bipi(η). (39)

Integrating equation (39) w.r.t. η in the limits [0, η] and using the conditions in (29) leads to

θ(η) = 1 + ηθ′(0) +
2N∑
i=1

biqi(η). (40)

Putting η = L in equation (40) and using the conditions in (29), we get

θ′(0) = − 1

L
− 1

L

2N∑
i=1

biqi(L). (41)

Substituting equation (41) in equations (39) and (40), we obtain

θ′(η) = − 1

L
+

2N∑
i=1

bi

[
pi(η)− 1

L
qi(L)

]
, (42)

θ(η) = 1− η

L
+

2N∑
i=1

bi

[
qi(η)− η

L
qi(L)

]
. (43)
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Applying quasilinearization technique [60] to handle the nonlinear terms in equations (27) and
(28), we have

f ′′′t+1(η) + ft(η)f ′′t+1(η)− {2f ′t(η) +M + Ω} f ′t+1(η) + f ′′t (η)ft+1(η)

= ft(η)f ′′t (η)− f ′2t (η)− ε(ε+M),
(44)

1

Pr
θ′′t+1(η) + ft(η)θ′t+1(η) + {γ − nf ′t(η)} θt+1(η)− nθt(η)f ′t+1(η)

+θ′t(η)ft+1(η) = ft(η)θ′t(η)− nf ′t(η)θt(η),
(45)

where t is the iteration parameter.
The wavelet collocation points are defined as,

ηl =
l − 0.5

2N
, l = 1, 2, . . . , 2N. (46)

Substituting equations (30), (35)-(38), (42)-(43) for f ′′′t+1(η), f ′′t+1(η), f ′t+1(η), ft+1(η), θ′′t+1(η),
θ′t+1(η), θt+1(η) respectively in equations (44), (45) and taking η → ηl, we get

2N∑
i=1

aiA(i, l) = B(l), (47)

2N∑
i=1

[aiC(i, l) + biD(i, l)] = E(l), (48)

where,

A(i, l) = hi(ηl) + ft(ηl)pi(ηl)− {2f ′t(ηl) +M + Ω} qi(ηl) + f ′′t (ηl)ri(ηl)

− 1

L

[
ft(ηl)− ηl {2f ′t(ηl) +M + Ω}+

1

2
η2l f

′′
t (ηl)

]
qi(L), (49)

B(l) = ft(ηl)f
′′
t (ηl)− f ′

2

t (ηl)− ε(ε+M)−
(
ε− 1

L

)
ft(ηl)

+

{
1 +

(
ε− 1

L

)
ηl

}
{2f ′t(ηl) +M + Ω} −

{
S + ηl +

(
ε− 1

2L

)
η2l

}
f ′′t (ηl),

(50)

C(i, l) = θ′t(ηl)ri(ηl)− nθt(ηl)qi(ηl)−
1

L

[
1

2
η2l θ
′
t(ηl)− nηlθt(ηl)

]
qi(L), (51)

D(i, l) =
1

Pr
hi(ηl) + ft(ηl)pi(ηl) + {γ − nf ′t(ηl)} qi(ηl)

− 1

L

[
ft(ηl) + ηl{γ − nf ′t(ηl)}

]
qi(L), (52)

E(l) = ft(ηl)θ
′
t(ηl)− nf ′t(ηl)θ(ηl) +

1

L
ft(ηl)−

(
1− ηl

L

)
{γ − nf ′t(ηl)}

+ n

{
(1 +

(
ε− 1

L

)
ηl

}
θt(ηl)−

{
S + ηl +

(
ε− 1

2L

)
η2l

}
θ′t(ηl). (53)

The wavelet coefficients ai and bi, i = 1, 2, . . . , 2N can be calculated from equations (47) and
(48) using the following initial approximation.

f0(ηl) = S, f ′0(ηl) = 1, f ′′0 (ηl) = 0,

θ0(ηl) = 1, θ′0(ηl) = 0.
(54)

These coefficients are then substituted in equations (30), (35)-(38), (42)-(43) to obtain the ap-
proximate solutions at the collocation points η → ηl.
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Figure 2: Effect of the velocity ratio parameter ε on the velocity profile when S = −0.5,
M = 15 and Ω = 1.

Figure 3: Effect of the magnetic parameter M on the velocity profile when S = −0.5, ε = 0.1
and Ω = 0.5.
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Figure 4: Effect of the permeability parameter Ω on the velocity profile when S = −0.5,
M = 0.5 and ε = 0.1.

Figure 5: Effect of suction (S > 0) on the velocity profile when Ω = 0.5, M = 0.5 and
ε = 0.1.
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Figure 6: Effect of injection S < 0 on the velocity profile when Ω = 0.5, M = 0.5 and
ε = 0.1.

Figure 7: Effect of the Prandtl number Pr on the temperature profile when S = −0.5,
M = 0.5, Ω = 0.5, n = 0.5, γ = 0.5 and ε = 0.1.
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Figure 8: Effect of the constant n on the temperature profile when S = −0.5, M = 0.5,
Ω = 0.5, γ = 0.1, ε = 0.1 and Pr = 0.7.

Figure 9: Effect of heat source (γ > 0) on the temperature profile when S = −0.5, M = 0.5,
Ω = 0.5, n = 0.5, ε = 0.1 and Pr = 1.
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Figure 10: Effect of heat sink (γ < 0) on the temperature profile when S = −0.5, M = 0.5,
Ω = 0.5, n = 0.5, ε = 0.1 and Pr = 0.75.

Figure 11: Effect of the velocity ratio parameter ε on the temperature profile when S = −0.5,
M = 0.5, Ω = 0.5, γ = 0.1, n = 0.5 and Pr = 0.75.
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Figure 12: Effect of the magnetic parameter M on the temperature profile when S = −0.5,
ε = 0.1, Ω = 0.5, γ = 0.1, n = 0.5, Pr = 0.75.

Figure 13: Effect of the permeability parameter Ω on the temperature profile when S = −0.5,
ε = 0.1, M = 2, γ = 0.1, n = 0.5 and Pr = 0.75.
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Figure 14: Effect of suction (S > 0) on the temperature profile when Ω = 0.3, ε = 0.1,
M = 2, γ = 0.1, n = 0.5 and Pr = 0.75.

Figure 15: Effect of injection (S < 0) on the temperature profile when Ω = 0.5, ε = 0.1,
M = 0.5, γ = 0.1, n = 0.5 and Pr = 0.75.

41



MES Bulletin of Applied Sciences Volume 2, Issue 2, 2019

5 Results and Discussions

> Figure 2 shows the effect of the velocity ratio parameter ε on the velocity profile f ′(η).
The velocity decreases with increase in the values of ε < 1. This implies that there is a
considerable decrease in the boundary layer thickness which leads to increase in ε. Increased
value of ε means that the free stream velocity surpasses the stretching velocity.

> Figure 3 shows the effect of the Magnetic parameter M , on the velocity profile f ′(η). The
velocity profile decreases with increase in M .

> Figure 4 illustrate the effect of the permeability parameter Ω on the velocity profile f ′(η). Ω
increases as velocity profile decreases. This is due to the fact that the porous medium results
into a drag force called Darcy force which decelerates the fluid in the boundary layer.

> Figure 5 shows the effect of suction S on the velocity profile f ′(η). The velocity decreases
with increase in the value of S.

> Figure 6 shows the effect of injection S on the velocity profile f ′(η). The velocity decreases
with increase in the value of S.

> Figure 7 presents the effect of the Prandtl number Pr on the temperature profile θ(η). Pr
increases with decrease in θ(η). This is because of the fact that as the Pr increases, thermal
boundary layer thickness reduces.

> Figure 8 presents the effect of the temperature index constant n on the temperature pro-
file θ(η). θ(η) decreases with increase in n due to the decreasing manner of the thermal
boundary layer thickness with increase in this parameter.

> Figure 9 shows the effect of the heat source generating parameter γ on the temperature
profile θ(η). θ(η) decreases with increase in γ.

> Figure 10 presents the effect of the heat sink generating parameter γ on the temperature
profile θ(η). θ(η) decreases with decrease in γ.

> Figure 11 shows the effect of velocity ratio parameter ε on the temperature profile θ(η). θ(η)
decreases with increase in ε.

> Figure 12 shows the effect of Magnetic parameter M on the temperature profile θ(η). θ(η)
decreases with increase in M .

> Figure 13 shows the effect of the Permeability parameter Ω on the temperature profile θ(η).
θ(η) decreases with increase in Ω.

> Figure 14 shows the effect of suction S on the temperature profile θ(η). θ(η) decreases with
increase in S.

> Figure 15 shows the effect of injection S on the temperature profile θ(η). θ(η) decreases
with increase in S.
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Abstract: Integral transform provides powerful operational method for solving initial
value problem and initial boundary value problem for linear differential equations, dif-
ference equations, integral equations and many more arising problems in applied mathe-
matics, mathematical physics and engineering science. In this paper we study about a type
of integral transforms called Z transform, examples and its basic operational properties.
Application of Z transform to difference equations and to infinite series are discussed with
examples.
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1 Introduction

The integral transform of function f(x) defined for x ∈ [a, b] is defined by [1]

I{f(x)} = F (t) =

b∫
a

K(x, t)f(x) dx

where K(x, t) is called the Kernel of the transform, F (t) is called the transformation function
and t the transform variable.

The basic aim of the integral transform method is to transform a given problem into one
that is easier to solve. When an ordinary differential equation with constant coefficients is con-
sidered, the given problem is transformed into an ordinary differential equation with algebraic
terms. But when a partial differential equation with n independent variables is considered, it is
transformed into a partial differential equation with n − 1 variables. Inversion of this solution
produces the solution of the original problem [2, 3].

Two of the most famous and widely used integral transforms are the Fourier transforms and
the Laplace transforms. In addition there are other transforms like the Hilbert transform and the
Sturm-Liouville transform, both of which are limited in their fields of applications compared to
the Fourier and Laplace transforms. A few discrete transforms are the Fourier transform (which
is the discrete analog of the Fourier transform) and the Z transform (which is the discrete ana-
log of the Laplace transform) which are being used in many engineering applications where it
is either impossible or inconvenient to use more conventional transforms.

The Z transform is a powerful mathematical tool used in solving difference equations. The
concept of Z transforms is similar to the concept of generating functions, as it is an operation
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that converts a discrete signal into a complex frequency domain representation. The Z trans-
form is also similar to the Laplace transform and thus has many common properties in between
them. In the Laplace transforms we consider the time function as discontinuous, but in Z trans-
form the time function is considered as a continuous function x(t). With the usage of digital
computers, more enhanced research has been done on the development of applications of Z
transforms [4, 5].

Definition of Z Transform and inverse Z Transform
The Z transform of a sequence {f(n)} is defined by [6, 7]

Z{f(n)} = F (z) =
∞∑
n=0

f(n)z−n

The inverse of Z transform is defined as

Z−1{f(z)} = f(n) =
1

2πi

∮
C

F (z)zn−1dz

2 Properties of Z Transforms

Theorem 1 (Translation or Shifting Property). If Z{f(n)} = F (z) and m ≥ 0, then

(i) Z{f(n−m)} = z−m

[
F (z) +

−1∑
r=−m

f(r)z−r

]
(Shifting to the right)

(ii) Z{f(n+m)} = zm

[
F (z)−

m−1∑
r=0

f(r)z−r

]
(Shifting to the left)

Proof. (i) Substitute n−m = r in the definition of Z transforms, then we have

Z{f(n−m)} = z−m
∞∑

r=−m

f(r)z−r

= z−m

[
−1∑

r=−m

f(r)z−r +
∞∑
r=0

f(r)z−r

]

= z−m

[
−1∑

r=−m

f(r)z−r + F (z)

]

(ii) Substitute n+m = r in the definition of Z transforms, then we have

Z{f(n+m)} = zm
∞∑
r=m

f(r)z−r

= zm

[
∞∑
r=0

f(r)z−r −
m−1∑
r=0

f(r)z−r

]
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= zm

[
F (z)−

m−1∑
r=0

f(r)z−r

]

Theorem 2 (Multiplication Property). If Z{f(n)} = F (z), then

(i) Z{a−nf(n)} = F (az)

(iii) Z{nf(n)} = −z d
dz
F (z)

(ii) Z{anf(n)} = F
(z
a

)

Proof. By the definition of Z transforms, we have

(i) Z{a−nf(n)} =
∞∑
n=0

f(n)(az)−n

= F (az)

(ii) Z{anf(n)} =
∞∑
n=0

f(n)
(z
a

)−n
= F

(z
a

)
(iii) Z{nf(n)} = z

∞∑
n=0

nf(n)z−(n+1)

= −z d
dz

{
∞∑
n=0

f(n)z−n

}
= −z d

dz
F (z)

Theorem 3 (Division Property). If Z{f(n)} = F (z) then Z
{
f(n)

n+m

}
= −zm

z∫
0

F (t)dt

tm+1

Proof. By the definition of Z transforms we have Z
{
f(n)

n+m

}
=
∞∑
n=0

f(n)

n+m
z−n

The right hand side of the above equation can be written as

Z

{
f(n)

n+m

}
= −zm

z∫
0

t−(m+1)

[
∞∑
n=0

f(n)t−n

]
dt

= −zm
z∫

0

F (t)dt

tm+1
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Theorem 4 (Convolution Theorem). If Z{f(n)} = F (z) and Z{g(n)} = G(z), then

Z{f(n) ∗ g(n)} = Z{f(n)}Z{g(n)}

where the convolution is defined by f(n) ∗ g(n) =
∞∑
m=0

f(n−m)g(m). [5]

Proof. By the definition of convolution of two integral function we have,

Z{f(n) ∗ g(n)} =
∞∑
m=0

g(m)
∞∑
n=0

f(n−m)z−n

Substitute n−m = r in the above expression, we obtain

Z{f(n) ∗ g(n)} =
∞∑
m=0

g(m)z−m
∞∑

r=−m

f(r)z−r where f(r) = 0 for r < 0

=
∞∑
m=0

g(m)z−m
∞∑
r=0

f(r)z−r

= Z{f(n)}Z{g(n)}

3 Examples on Z Transforms
Example 1: Find the Z transform of the following functions: [8, 9]

(i) f(n) = (n− 1)2 (ii) f(n) =
(n+ 1)an

n!

By the definition of Z transformation we have

(i) Z{f(n)} = Z(n2 − 2n+ 1)

= Z(n2)− 2Z(n) + Z(1)

=
z3 − 3z2 + 4z

(z − 1)3

(ii) Z{nan} = −z d
dz

[Z{an}]

= −z d
dz

[
z

z − a

]
=

za

(z − a)2

Then Z{n2an} = −z d
dz

[Z{nan}]

= −z d
dz

[
za

(z − a)2

]
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=
az(z + a)

(z − a)3

Example 2: Find the inverse of Z transforms of the following functions:

(i) F (z) =
z3

(z2 − 1) (z − 2)
(ii) F (z) =

7z − 11z2

(z − 1) (z − 2) (z + 3)

(i) Rewriting the given problem as
F (z)

z
=

z2

(z − 1) (z + 1) (z − 2)

On solving the R.H.S. we obtain

z2

(z − 1) (z + 1) (z − 2)
=

−1

2(z − 1)
+

1

6(z + 1)
+

4

3

1

(z − 2)

Taking inverse Z transforms on both sides we have,

f(n) =
1

6

[
(−1)n − 3(1)n + 23(2)n

]

(ii) Rewriting the given problem as
F (z)

z
=

7− 11z

(z − 1) (z − 2) (z + 3)

On solving the R.H.S. we obtain

F (z)

z
=

1

(z − 1)
+
−3

(z − 2)
+

2

(z + 3)

Taking inverse Z transforms on both sides we obtain

f(n) = 1− 3(2)n + 2(−3)n

Example 3: Prove the following:[10]

(i) Z{cosh(na)} =
z(z − cosh(a))

z2 − 2z cosh(a+ 1)

(iii) Z
{
f(n)

n+m

}
= zm

∞∫
z

F (t)dt

tm+1

(ii) Z{cos(bn)} =
z2 − z cos(b)

z2 − 2z cos(b) + 1

By the definition of Z transform we have

(i) Z(cosh(na)) =
∞∑
n=0

cosh(na)z−n

=
1

2

∞∑
n=0

enaz−n +
1

2

∞∑
n=0

e−naz−n

=
1

2

[
1

1− eaz−1

]
+

1

2

[
1

1− e−az−1

]
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=
z(z − cosh(a))

z2 − 2z cosh(a+ 1)

(ii) We know that

Z{an} =
z

z − a
(1)

Taking a = eib in equation (1), we obtain

Z{eib} =
z(z − e−ib)

(z − e−ib)(z − e−ib)

=
z2 − ze−ib

z2 − z(eib + e−ib) + 1

Z{cos(bn)}+ iZ{sin(bn)} =
z2 − z cos(b)

z2 − 2z cos(b+ 1)
+ i

z sin(b)

z2 − 2z cos(b+ 1)
(2)

Equating the real and imaginary parts of equation (2), we have

Z{cos(bn)} =
z2 − z cos(b)

z2 − 2z cos(b+ 1)

Z[sin(bn)] =
z sin(b)

z2 − 2z cos(b+ 1)
(3)

(iii) Z
{
f(n)

n+m

}
=
∞∑
n=0

f(n)

n+m
z−n

Rewriting the R.H.S. of the above equation, we have

Z

{
f(n)

n+m

}
= zm

∞∑
n=0

f(n)

 ∞∫
z

t−(n+m+1)dt


= zm

∞∫
z

t−(m+1)

[
∞∑
n=0

f(n)t−n

]
dt

= zm
∞∫
z

F (t)dt

tm+1

4 Applications of of Z Transforms

Analyzing the behavior of functions whose values are known on a finite or infinite set
of discrete points in a given domain cannot be achieved by using the Fourier or the Laplace
Transform techniques. In signal processing system, to determine the output relation when the
discrete input function is known can be solved using techniques in the Z transform.
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4.1 Applications of Z Transforms to Finite Difference Equations
Difference equations arise in a variety of applications. They are closely related to dif-

ferential equations. A linear finite difference equation with constant coefficients of the form
af(n+2)+ bf(n+1)+ cf(n) = φ(n) with given values of f(0) and f(1), can be solved using
Z transforms. We follow the following steps: [10]
1. Let F (z) = Z{f(n)}.
2. Apply Z transform on both sides of the given difference equation. To express
Z{f(n+ 1)}, Z{f(n+ 2)}, Z{f(n+ 3)}, use the following results

• Z{f(n+ 1)} = zF (z)− zf(0)

• Z{f(n+ 2)} = z2F (z)− z2f(0)− zf(1)

• Z{f(n+ 3)} = z3F (z)− z3f(0)− z2f(1)− zf(2) and so on . . . . . .

3. Substitute the values of f(0) and f(1) and obtain an expression for F (z).
4. Take the inverse Z transform of F (z) and determine f(n), which is the required solution.

Example 4: Solve the following difference equations using Z transforms:

(i) f(n+ 2) + 3f(n+ 1) + 2f(n) = 0; f(0) = 1, f(1) = 2

(ii) f(n+ 1) + 3f(n) = n; f(0) = 1

(iii) f(n+ 2)− 5f(n+ 1) + 6f(n) = 2n; f(0) = 1, f(1) = 0

(i) Applying Z transforms on the both sides of given equation, we have

z2[F (z)− f(0)− f(1)z−1] + 3z[F (z)− f(0)] + 2F (z) = 0

F (z)

z
=

−(z + 5)

(z + 2) (z + 1)

F (z)

z
=
−3

(z + 2)
+

4

(z + 1)

Z{f(n)} = −3

[
z

z + 2

]
+ 4

[
z

z + 1

]
Taking inverse Z transforms on both sides, we get

f(n) = −3(−2)n + 4(−1)n

(ii) Applying the Z transforms on the both sides of given equation, we have

z[F (z)− f(0)] + 3F (z) =
z

(z − 1)2

F (z)

z
=

1

(z + 3)
+

1

(z + 3) (z − 1)2

Z{f(n)} =
z

(z + 3)
+

1

16

z

(z + 3)
− z

16(z − 1)
+

z

4(z − 1)2

Taking inverse Z transforms on both sides, we get

f(n) =
1

16
{17(−3)n − 1 + 4n}
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(iii) Applying the Z transforms on the both sides of given equation, we obtain

z2[F (z)− f(0)− f(1)z−1]−5z[F (z)− f(0)] + 6F (z) =
z

z − 2
F (z)

z
=

1

(z − 2)2 (z − 3)
+

z − 5

(z − 3) (z − 2)

F (z)

z
=

[
3

z − 2
− 2

z − 3

]
+

[
1

z − 3
− 1

z − 2
− 1

(z − 2)2

]
Z{f(n)} = 2

[
z

z − 2

]
−
[

z

z − 3

]
−
[

z

(z − 2)2

]
Taking inverse Z transforms on both sides, we get

f(n) = 2n+1 − 3n − n2n−1

4.2 Applications of Z Transforms Summation of Infinite Series
Theorem 1. If Z{f(n)} = F (z), then

(a)
n∑
k=1

f(k) = Z−1
{
z F (z)

z − 1

}
(b)

n∑
k=1

f(k) = lim
z→1

F (z) = F (1)

Proof. (b) Consider g(n) =
n∑
k=0

f(k)

Then g(n) = f(n) + g(n− 1)
Applying the Z transform to the above equation, we obtain

G(z) = F (z) + z−1G(z)

G(z) =
z F (z)

(z − 1)

Z

{
n∑
k=0

f(k)

}
=
z F (z)

(z − 1)

(b) Applying the limit as z → 1 together with the final value theorem , we get

lim
n→∞

n∑
k=0

f(k) = lim
z→1

(z − 1)
zF (z)

z − 1

= F (1) (4)

Example 5: Find the sum of the following series using the Z transform :

(i)
∞∑
n=0

aneinx (ii)
∞∑
n=0

an sin(nx)
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(i) By the definition of Z transforms, we have

Z{einx} =
∞∑
n=0

einxz−n

= 1 +
eix

z
+
e2ix

z2
+ . . . . . .

=
z

z − eix

Then Z{aneinx} =

(z
a

)
(z
a

)
− eix

=
z

z − aeix
∞∑
n=0

aneinx = lim
z→1

F
(z
a

)
[Using equation (4)]

= (1− aeix)−1

(ii) By using equation (3) and the above result, we see that

Z{an sin(nx)} = F
(z
a

)
=

az sin(x)

a2 − 2az cos(x) + z2

∞∑
n=0

an sin(nx) = lim
z→1

F
(z
a

)
=

a sin(x)

a2 − 2a cos(x) + 1

Example 6: Prove the following results:

(i)
∞∑
n=0

(−1)n
xn+1

n+ 1
= log(1 + x) (ii)

∞∑
n=0

xn

n!
= ex

(i) Consider Z{f(n)} =
∞∑
n=0

xn+1z−n

= x

[
1 +

x

z
+
x2

z2
+
x3

z3
+ . . . . . .

]
=

xz

z − x
By the Division property of Z transforms, we have

Z

{
xn+1

n+ 1

}
= z

∞∫
z

zx

(z − x)

dz

z2

= zx

[
1

x
log

(
z − x
z

)]∞
z
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= −z
[
log

(
z − x
z

)]
Replacing x by −x in the above result, we get

Z

{
(−1)n

xn+1

n+ 1

}
= z log

(
z + x

z

)
Using equation (4), we have

∞∑
n=0

(−1)n
xn+1

n+ 1
= log(1 + x)

(ii) We have Z{xnf(n)} = F
(z
x

)
Z

{
xn

n!

}
=
∞∑
n=0

xn

n!
z−n

Since F (z) = e

1

z


= 1 +

x

z
+

x2

2!z2
+

x3

3!z3
+ . . . . . .

= e

x

z

Using equation (4), we have
∞∑
n=0

xn

n!
= ex

5 Conclusion
We have studied about a type of integral transform called Z transforms, its basic properties

and various theorems on it. We have also seen how to apply Z transforms on finite difference
equations and to find the summation of infinite series through various examples.
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1 Introduction
A ferrofluid or magnetic fluid is a liquid that become strongly magnetized in presence of

a magnetic field. Ferrofluids are colloidal liquids made up of nano scale ferromagnetic or fer-
rimagnetic particles suspended in a carrier fluid. It is an artificial material rather than formed
naturally. Ferrofluid is super-paramagnetic and create liquid seals held in position by magnetic
fields [1].

Research is under way to create an adaptive optics shape-shifting magnetic mirror from
magnetic fluid for Earth-based astronomical telescopes. Optical filters are used to select dif-
ferent wavelengths of light. The replacement of filters is cumbersome,especially when the
wavelength is changed continuously with unable-type lasers. Optical filters tunable for differ-
ent wavelengths by varying the magnetic field can be built using magnetic fluid emulsion.

Magnetic fluids enable an interesting opportunity to harvest vibration energy from the en-
vironment. Existing methods of harvesting low frequency (< 100Hz) vibrations require the
use of solid resonant structure. With magnetic fluid based energy harvester designs no longer
need solid structure. One example of magnetic fluid based energy harvesting is discussed in
the journal article [2].

It is also used in electromagnetic ferrofluid-based energy harvester.For this a ferrofluid is
placed inside a container that is wrapped with a coil of wire.The ferrofluid is then externally
magnetized using a permanent magnet.When external vibrations cause the ferrofluid to slosh
around in the container, there is a change in magnetic flux fields with respect to the coil of
wire.Through Faraday’s law of electromagnetic induction,voltage is induced in the coil of wire
due to change in magnetic flux. An external magnetic field imposed on a magnetic fluid with
varying susceptibility (because of temperature gradient)result in a non-uniform magnetic body
force, which leads to a form of heat transfer called thermomagnetic convection. This form of
heat transfer can be useful when conventional convection heat transfer is inadequate for exam-
ple in miniature micro scale devices or under reduced gravity conditions [3].

Ferrofluids of suitable composition can exhibit extremely large enhancement in thermal
conductivity. The large enhancement in k is due to the efficient transport of heat through per-
colating nanoparticle paths. Special magnetic nanofluids with tunable thermal conductivity
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to viscosity ratio can be used as multi-functional ’smart material’ that can remove heat and
also arrest vibrations. Such fluids may find applications in micro-fluidic devices and micro-
electromechanical systems (MEMS) [4].

Ferrofluid have numerous optical applications because of their refractive properties ; that
is,each grain, a micro-magnet, reflects light. These applications include measuring specific vis-
cosity of a liquid placed between a polarizer and an analyzer, illuminated by a helium -neon
laser [5].

Recently, it has been demonstrated that magnetic fluids of suitable composition can exhibit
extremely large enhancement in thermal conductivity (k) (i.e. 300 of the base fluid thermal con-
ductivity). Studies confirmed that the large enhancement in k is due to the efficient transport
of heat through percolating nanoparticle paths paths. Special magnetic nanofluids with tun-
able thermal conductivity to viscosity ratio can be used as multi-functional ’smart materials’
that can remove heat and also arrest vibrations(damper). Such fluids offer exciting applications
in micro-fluidic devices, micro and nano electromechanical system (MEMS and NEMS) and
other nano technology based miniature devices.

Optical filters are used to select different wavelengths of lights. The replacement of filters
is cumbersome, especially when the wavelength is changed continuously with tunable type of
lasers. Optical filters, tunable for different wavelengths by varying the magnetic field can be
built using ferrofluid emulsion [2].

Prakash et. al. [6] They examined the plane porous slider bearing and showed that the
coefficient of friction increases even though the effect of porosity decreases the load capacity
and friction.

2 Geometry and Governing equations
The flow between two infinite parallel flat plates separated by a fixed distance h apart, in

which the plates are stationary and a pressure gradient is constant such a flow is called Plane
Poiseuille Flow.

Let x be the direction of the flow and z be the direction perpendicular to the flow.

z = 0

z = h
~q = Ui

x

y

z

Figure 1: Geometry of the flow

The velocity of the flow is given by

~q = u(x, y, z)̂i, v = 0, w = 0, (1)
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From the continuity equation we have

∇ · ~q = 0. (2)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3)

since u is independent of x we have
∂u

∂x
= 0. (4)

The variation in the y direction are neglected since the flow is extending to infinity in the y
direction. Therefore we have

∂u

∂y
= 0, (5)

hence we have
~q = u(z)̂i. (6)

The Navier-stokes equation [1, 3, 4] is given by

ρ

[
∂~q

∂t
+ (~q · ∇)~q

]
= ρ~g −∇p+ µ0( ~M · ∇) ~H + µ∇2~q. (7)

Since the flow is steady we have
∂~q

∂t
= 0. (8)

Consider

(~q · ∇)~q =

(
u(z)

∂

∂x

)
u(x)̂i = 0, (9)

Consider

∇2~q =

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
î, (10)

∇2~q =
∂2u

∂z2
=
d2u

dz2
î. (11)

Let
~M = (Mx,My,Mz), ~H = (Hx, Hy, Hz), (12)

consider

( ~M · ∇) ~H =

[
(Mx,My,Mz) ·

(
∂

∂x
î,
∂

∂y
ĵ,
∂

∂z
k̂

)]
(Hx, Hy, Hz),

( ~M · ∇) ~H = (Mx
∂Hx

∂x
+Mz

∂Hx

∂z
)̂i+ (Mx

∂Hz

∂x
+Mz

∂Hz

∂z
)k̂,

(13)

therefore equation (7) becomes

−∇p+ µ
∂2u

∂z2
î+ µ0

(
Mx

∂Hx

∂x
+Mz

∂Hx

∂z

)
î+ µ0

(
Mx

∂Hz

∂x
+Mz

∂Hz

∂z

)
k̂ = 0. (14)

In component form equations can be written as

∂P

∂z
− µ0

(
Mx

∂Hz

∂x
+Mz

∂Hz

∂z

)
= 0, (15)
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− ∂P

∂z
+ µ0

(
Mx

∂Hz

∂x
+Mz

∂Hz

∂z

)
= 0. (16)

For irrotational flow [1] we have

~H = −∇φ, ∇× ~H = 0. (17)

From Maxwell’s equations [1, 4, 5, 7] we have

∇ · ~B = 0,
~B = µ0( ~H + ~M).

(18)

The magnetization [3, 4] equation for ferrofluid is given by

~M = µ ~H. (19)

From equations (17)

Hx = −∂φ
∂x
,

Hz = −∂φ
∂z
.

(20)

From equation (19) and (20)
Mx = µHx, Mz = µHz. (21)

~H2 = H2
x +H2

z . (22)

Consider

Mx
∂Hx

∂x
+Mz

∂Hx

∂z
= µHx

∂

∂x

(
−∂φ
∂x

)
+ µHz

∂

∂z

(
−∂φ
∂x

)
,

= µ

(
−∂φ
∂x

)
∂

∂x

(
−∂φ
∂x

)
+ µ

(
−∂φ
∂z

)
∂

∂z

(
−∂φ
∂x

)
,

=
µ

2

∂

∂x
(H2

x +H2
z ) ,

Mx
∂Hx

∂x
+Mz

∂Hx

∂z
=
µ

2

∂

∂x
H2.

(23)

Now consider

Mx
∂Hz

∂x
+Mz

∂Hz

∂z
= µHx

∂

∂x

(
−∂φ
∂z

)
+ µHz

∂

∂z

(
−∂φ
∂z

)
,

= µ

(
−∂φ
∂x

)
∂

∂x

(
−∂φ
∂z

)
+ µ

(
−∂φ
∂z

)
∂

∂z

(
−∂φ
∂z

)
,

=
µ

2

∂

∂z
(H2

x +H2
z ) ,

Mx
∂Hz

∂x
+Mz

∂Hz

∂z
=
µ

2

∂

∂z
H2.

(24)

Nomenclature: ~q is the velocity of the fluid, ρ is the density of the fluid, ~g is the gravitation,
P is the pressure, ~M is the magnetization, ~H is the magnetic field intensity, µ0 is the perme-
ability of free space, µ̄ is the magnetic susceptibility, η is the coefficient of viscosity of the
fluid.
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3 Method of Solution
Substituting equations (23) and (24) in equations (15) and (16) we get

µ
∂2u

∂z2
− ∂

∂x

(
p− µ0µ

2
H2

)
= 0, (25)

∂

∂z

(
p− µ0µ

2
H2

)
= 0. (26)

From equation (25) we have

µ
∂2u

∂z2
− A = 0, (27)

where A =
∂

∂x

(
p− µ0µ

2
H2

)
. Integrating the equation (27) we get

u =
1

µ

(
A
z2

2
+ cz +D

)
, (28)

where C,D are constants to be determined.

Boundary Conditions:
Since the fluid is viscus and the plates are stationary we have the boundary conditions

u = 0 at z = 0, (29)

u = 0 at z = h. (30)

Using the boundary conditions in equation (28) we get

D = 0,

C = −Ah
2
.

(31)

Substituting the values of C,D in equation (28) we get

u =
1

µ

(
Az2

2
− Ah

2
z

)
,

u

U
=
Ah2

2µU

(
z2

h2
− z

h

)
,

u∗ =
Ah2

2µU

(
z2
∗ − z∗

)
,

(32)

where u∗ =
u

U
is the non-dimensional velocity and z∗ =

z

h
is non-dimensional vertical length.

Neglecting the asterisk (∗) for simplicity and substituting the value of A we get

u = −Ah
2

2µ
(z − z2). (33)

Therefore equation (33) is called velocity distribution of plane Poiseuille flow. Also equation
(33) can be written as

u =
G

2

(
z − z2

)
, (34)

where G = −Ah
2

µU
.

61



MES Bulletin of Applied Sciences Volume 2, Issue 2, 2019

3.1 Maximum Velocity

Differentiate equation (33) with respect to z and equate it to zero we get

z =
1

2
, (35)

also
∂2u

∂z2
= −G < 0, (36)

therefore the maximum velocity is given by

umax = −Ah
2

8µU
, (37)

umax = − h2

8µU

∂

∂x

(
p− µ0µ

2
H2

)
. (38)

Therefore equation (38) gives the maximum velocity.

3.2 Average Velocity

The average velocity is denoted by u and is defined as the ratio of total flow over a cross section
to the area of the cross section.

u =
1

h

∫ h

0

udz,

u =
1

h

∫ 1

0

u∗Uhdz∗,

u = − h2

12µU

{
∂

∂x

(
p− µ0µ

2
H2

)}
,

(39)

and

u =
2

3
umax, (40)

where u∗ =
u

U
is the non-dimensional average velocity.

3.3 Mass Flow Rate

The mass flow rate denoted by M and is defined as the amount of fluid that passes through any
cross section of the channel per unit width and per unit time.

M = ρ

∫ h

0

udz,

M = − ρh3

12Uµ

{
∂

∂x

(
p− µ0µ

2
H2

)}
,

(41)

therefore equation (41) gives the mass flow rate.
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4 Results and Discussions
Average velocity and mass flow rate are determined for ferrofluid in the absence of pressure

gradient. We found that the average velocity is constant, whereas mass flow rate is proportional
to the density of the fluid.
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1 Introduction
The finite difference approximations for the derivatives are one of the simplest and old-

est methods to solve differential equations. It was already known by L. Euler (1707-1783) in
the year 1768, in one dimension of space and was probably extended to dimension two by C.
Runge (1856-1927) in the year 1908. The advent of finite difference techniques in numerical
applications began in the early 1950s and their development was stimulated by the emergence
of computers that offered a convenient framework for dealing with complex problems of sci-
ence and technology.

The principle of finite difference methods is similar to the numerical schemes used to solve
ordinary differential equations. The domain is partitioned in space and approximations of the
solution are compute at the space. The error between the numerical solution and the exact so-
lution is determined by the error that is committed by going from a differential operator to a
difference operator. This error is called the discretization error or truncation error. The term
truncation error reflects the fact that a finite part of a Taylor series is used in the approximation.

In Math 3351, Courtney Remani focused on solving nonlinear equations involving only
a single variable. They used many methods like Newton’s method, the Secant method, and
the Bisection method and also they examined numerical methods such as Runge-Kutta method
that are used to solve initial-value problems for Ordinary differential equations. They focused
only on solving nonlinear equations with only one variable rather than nonlinear equations with
several variable [1].

2 Finite difference method
Finite difference methods (FDM) are numerical methods for solving differential equations

by approximating them with difference equations, in which finite differences approximate the
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derivatives. Finite difference method convert a non-linear ordinary differential equations into a
system of non-linear equations which can be solved by matrix algebra techniques. It computes
the solutions numerically at a predefined set of discrete points in the structured grid of a com-
putational domain. These discrete points along with their inter connections are called nodal
points of the grid or mesh. The procedure of identifying the grid points for a given domain is
called the discretization of the domain, which is the first step in the finite difference method [2].

The finite difference method approximates the differential operator by replacing the deriva-
tives in the equation using differential quotients, which involve values of the solution at discrete
mesh points in the domain under study. Repeated applications of this representation set up al-
gebraic systems of equations in terms of unknown mesh point values. The method is a classical
one, having been established almost a century ago. Timoshenko and Goodier (1970) provided
some details on its applications in elasticity. The major difficulty with this scheme lies in the
inaccuracies in dealing with regions of complex shape, although this problem can eliminated
through the use of coordinate transformation techniques [3].

Weighted residual methods form a class of methods that can be used to solve differential
equations. They make use of approximation functions that are appropriately weighted in order
to find a solution which approximates the solution to the differential equations as closely as
possible. Weighted residual methods are used in several other commonly encountered meth-
ods for solving differential equations numerically. It forms the basis for most of the numerical
schemes.

The concept of FDM is focused on approximating differentials. In contrast to this, weighted
residual methods evaluate the integral of differential equation and optimize an approximation
such that the integrals of the correct and the approximated solutions match on a given domain.
Therefore these equations use integral approximations. FDM uses an approximation of the dif-
ferential of the differential equation. Hence it is a differential approximation. The mathematics
of FDM is based on Taylor series approximations. The most common equations are

• Central finite difference scheme ((6)), for approximating first derivatives.
• Forward finite difference scheme ((4)), for approximating first derivatives.
• Backward finite difference scheme((5)), for approximating first derivatives.
• Central finite difference scheme ((7)), for approximating second derivatives.

These schemes are used in many forms in numerical solvers. The difference in the solution
i.e., the finite change of the solution is approximated on a very small finite interval using one
of these equations. All of these equations are linear, i.e., the solution is linearly approximated.
Obviously, this approximation is only correct if the interval on which the function is linearized
is sufficiently small. Otherwise, the solution becomes inexact [4].

The particular difference quotient and step size h are chosen to maintain a specified order
of truncation error. However, h cannot be chosen too small because of the general instability of
the derivative approximation. In the finite difference method, the approximation solutions are
found by solving a set of algebraic equations that are the discrete representation of the govern-
ing differential equations and the boundary conditions. The discrete representation is formed
by replacing the derivatives in the governing equations and the boundary conditions with ap-
proximations expressed in terms of difference between nodal displacements [5].

The finite difference method for the nonlinear equation requires the replacement of y′′ and

66



MES Bulletin of Applied Sciences Volume 2, Issue 2, 2019

y′ by difference quotients, which results in a nonlinear system. This system can be solved using
successive iterative method and Newton’s method.

Newton’s method, also known as the Newton-Raphson method, named after Isaac Newton
and Joseph Raphson, is a root-finding algorithm which produces successively better approxi-
mations to the roots (or zeros) of a real-valued function. It is a powerful technique for solving
equations numerically. It is based on the simple idea of linear approximation. The Newton
method, properly used on a root with devastating efficiency. The Newton-Raphson method is
widely used in finding the root of nonlinear equations. Newton’s method converges quadrati-
cally. While carrying out this method the system converges quite rapidly once the approxima-
tion is close to the actual solution of the nonlinear system. This is seen as a advantage because
Newton’s method required less iterations, compared to another method with a lower rate of
convergence, to reach the solution. However, when the system does not converge then an error
in the computations occurs or a solution may not exist [6].

2.1 Advantages and Disadvantages of finite difference method

An important advantage of the finite difference method is its simplicity. Another advan-
tage is the possibility to easily obtain high order approximations, and hence to achieve high
order accuracy of the spatial discretization. On the other hand, because the method requires a
structured grid, the range of application is clearly restricted. Furthermore, the finite difference
method cannot be directly applied in body-fitted(curvilinear) coordinates, but the governing
equation have to be first transformed into a Cartesian coordinate system. The problem herewith
is that the Jacobian coordinate transformation appears in the flow equations. This Jacobian has
to be discretized consistently in order to avoid the introduction of additional numerical errors.

Finite difference methods are the easiest numerical method to understand and implement
differential equations, for problems that satisfy its structured discretization assumptions, and
can be useful in other domain when we need to estimate other derivatives. It is most transparent
and the most general method among the various numerical approaches. It has a straight forward
nature and a minimum requirement on hardware.

The problem with Finite difference method is that in their most basic form, aren’t applicable
to unstructured domains. It is difficult to solve large, sparse system of matrices. Approximation
property will ensure the error(difference between exact solution and finite difference method).
They quickly become unwieldy if we need to start adding any sort of complexity like moving
boundaries or an unstructured grid.

The FDM has better stability characteristics, but they generally requires more computation
to a specified accuracy. The approximations may not be as accurate as the other numerical
method for non-linear equation, there is less sensitivity to round off error.

2.2 Applications

1. Finite difference method’s are very viable numerical methods for solution of partial dif-
ferential equation and hence is suitable for solving plate binding equation. This method
is sufficiently accurate for this thin plate analysis.
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2. It is used in Power-flow problem formulation. Due to the nonlinear nature of this prob-
lem, numerical methods are employed to obtain a solution that is within an acceptable
tolerance. The solution to the Power-flow problem begins with identifying the known
and unknown variables in the system. Hence FDM’s are used.

3. Finite difference methods (FDM) are used to numerically solve the elastodynamic wave
equations. Finite difference techniques are applied to approximate both the time and
space derivatives and are combined in various ways to provide different numerical algo-
rithms for modeling elastic wave propagation.

4. The finite difference method is directly applicable only to rather simple geometries.
Nowadays, it is utilized in the research of turbulent flows and together with immersed
boundary cells in biology.

5. The FDM is a time-domain technique, which can find the concentration of dye every-
where in the computational domain at a given time frame. Burley et al., Wai and Vosoughi
solved their convective dye transfer model equation by the FDM presented the results in
the form of a number of graphs representing the variation in the concentration of dye at
various points in the dyeing machine with time. Shannon et al. used the finite difference
method to obtain the solution of their flow model equations, which predicts pressure and
velocity profiles based on user defined package geometry, permeability profile and fluid
properties [7].

2.3 Theorem
Suppose the function f in the boundary value problem,

y′′ = f(x, y, y′), a ≤ x ≤ b, y(a) = α and y(b) = β

is continuous on the set,

D = ((x, y, y′)|a ≤ b,−∞ < y <∞,−∞ < y′ <∞
and that the partial differential derivatives fy and fy′ are also continuous in D. If,

1. fy(x, y, y′) > 0 for all (x, y, y′) ∈ D, and

2. a constant M exists with |fy(x, y, y′)| < M for all (x, y, y′) ∈ D, then the boundary
value problem has a unique solution.

The numerical method we will be looking at is the finite difference method. This method
can be used to solve both linear and nonlinear ordinary differential equations. Here we are
considering the nonlinear finite difference method. Let nonlinear boundary value problem is of
the form,

y′′ = f(x, y, y′), a ≤ x ≤ b, y(a) = α and y(b) = β.

In order for the finite difference method to be carried out we have to assume f satisfies the
following conditions,

1. f and the partial derivatives fy and fy′ are all continuous on

D = {(x, y, y′)|a ≤ x ≤ b,−∞ < y, y′ <∞}

2. fy(x, y, y′) ≥ δ on D, for some δ > 0.

3. Constants k and L exists, with

k = max(x,y,y′)∈D|fy(x, y, y′)|, and L = max(x,y,y′)∈D|fy′(x, y, y′)|[8].
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3 Method of solution
Consider the nonlinear boundary value problems (BVPs) for the second order differential equa-
tion of the form,

y′′ = f(x, y, y′), a ≤ x ≤ b, y(a) = α and y(b) = β. (1)

Consider the finite-difference method for y′(x) and y′′(x) be,

y′(x) =
1

2h
(y(x+ h)− y(x− h))− h2

6
y′′′(x???) (2)

y′′(x) =
1

h2
(y(x+ h)− 2y(x) + y(x− h))− h2

12
y′′′(x???) (3)

where x??? is between x− h and x+ h.
By neglecting the higher order terms in equation (2) we get,
Forward difference approximation is,

y′ =
y(x+ h)− y(x)

h
(4)

Backward difference approximation is,
y′ =

y(x)− y(x+ h)

h
(5)

Adding equation (4) and (5) we obtain,
y′′ =

y(x+ h)− y(x− h)

2h
. (6)

Equation (6) is called central difference approximation for first order derivative.
By neglecting the higher order terms in equation (3) we get,

y′′ =
y(x+ h)− 2y(x) + y(x− h)

h2
(7)

Equation (7) is called central difference approximation for second order derivative.
Similar to the Finite difference method for linear boundary value problem we have,

h =
b− a
N + 1

, and x0 = a

x1 = a+ h

...
xN = a+Nh

xN+1 = a+ (N + 1)h = b

Let, y0 = α, and yN+1 = β,
Apply central difference approximation formula to the equation(1) we get,

1

h2
(yi+1 − 2i + yi−1) = f

(
xi, yi,

1

2h
(yi+1 − yi−1)

)
(8)

yi−1 − 2yi + yi+ 1− h2f
(
xi, yi,

1

2h
(yi+1 − yi−1)

)
= 0

− yi−1 + 2yi − yi+ 1 + h2f(xi, yi,
1

2h
(yi+1 − yi−1) = 0. (9)
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For i = 1, 2, · · ·N .
The N ×N nonlinear system of equations obtained from this method is,

1− y2 + h2f

(
x1, y1,

y2 − α
2h

)
− α = 0,

−y1 + 2y2 − y3 + h2f

(
x2, y2,

y3 − y1
2h

)
= 0,

... (10)

−yN−2 + 2yN−1 − yN = h2f

(
xN−1, yN−1,

yN − yN−2
2h

)
= 0,

−yN−1 + 2yN + h2f

(
(xN , yN ,

β − yN−1
2h

)
− β = 0.

Equation (10) can be written in Matrix form as,

diag {−1, 2,−1}Y + h2F (x, Y ) = AY + h2F (x, Y ) = Y . (11)

where, Y = [y1, · · · yN ] ,

Y = [α, 0 · · · 0, β] ,

A =diag {−1, 2,−1}

and

F (x, Y ) = [F1(x, Y ) · · · FN(x, Y )], where Fi(x, Y ) = f

(
xi, yi,

1

2h
(yi+1 − yi−1)

)
.

(12)
We can find the initial approximation Yk by the following equation,

Yk = α +
β − α
b− a

(xi − α)

where, xi = α + ih ∀ i = 1, 2, · · ·N .

It can be shown that the system of N nonlinear equations from (10) has a unique solution

if h <
2

L
where,∣∣∣∣∂f(x, y, y′)

∂y′

∣∣∣∣ ≤ L for all (x, y, y′) in D = {(x, y, y′)|a ≤ x ≤ b,−∞ < y, y′ <∞}

Generally, the nonlinear equation in (10) cannot be solved exactly and then y
(k)
1 · · · y

(k)
N are

solved iteratively.
Let the initial values be Y0 =

[
y
(0)
1 · · · y

(0)
N

]
, we have Yk =

[
y
(k)
1 · · · y

(k)
N

]
at the kth iteration

and solve Yk+1 using following methods.

3.1 Successive iteration method
Yk+1 is the solution of the following system of linear equations,

AYk+1 + h2F (x, Yk) = Y
AYk+1 = Y − h2F (x, Yk)
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3.2 Newton method

Let G(x, Y ) = AY + h2F (x, Y )− Y = [g1(x, Y ) · · · gN(x, Y )].
The linearization of G(x, Y ) at Yk is,

G(x, Y ) ≈ G(x, Yk) + J(x, Yk)(Yk+1 − Yk).

where,

J(x, Y ) =

[
∂gi(x, Y )

∂yj

]
=



∂g1
∂y1

∂g1
∂y2

· · · ∂g1
∂yN

∂g2
∂y1

∂g2
∂y2

· · · ∂g2
∂yN

...
...

...
...

∂gN
∂y1

∂gN
∂y2

· · · ∂gN
∂yN


is the Jacobi Matrix of G(x, Y ). Then solve the system of linear equations for Yk+1.

G(x, Yk) + J(x, Yk)(Yk+1 − Yk) = 0
Yk+1 = Yk − [J(x, Yk)]

−1G(x, Yk).

where,
J(x, Y ) = A+ h2JF (x, Y )

JF (x, Y ) =

[
∂Fi(x, Y )

∂yj

]
JF (x, Y ) = diag

{
∂Fi(x, Y )

∂yj−1
,
∂Fi(x, Y )

∂yj
,
∂Fi(x, Y )

∂yj+1

}
In finite difference method, J(y1, y2, · · · , yN) is tridiagonal with ijth entry. This means

that there are non-zero entries on the diagonal below the main diagonal, and there are non-zero
entries on the diagonal directly above the main diagonal [8].

4 Examples and Discussions

Example 1: Use the nonlinear finite difference method with h=0.25 to approximate the solution
to the boundary-value problem,

y′′ = 2y3, −1 ≤ x ≤ 0, y(−1) =
1

2
, y(0) =

1

3
.

Compare the results to the actual solution y(x) =
1

x+ 3
.

Solution: Given,

y′′ = 2y3, −1 ≤ x ≤ 0, y(−1) =
1

2
, y(0) =

1

3

Let, x = [−1,−0.75,−0.5,−0.25, 0] and Y =


1

2
0
1

3
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Yk = α +
β − α
b− a

(xi − a) =

0.83333
0.16666

0.25



F (x, Yk) =


f

(
x1, y1,

(
1

2h
(y2 − α)

))
f

(
x2, y2,

(
1

2h
(y3 − y1)

))
f

(
x3, y3,

(
1

2h
(β − y3)

))

 = 2

y31y32
y33

 and F (x, Yk) =

( 1
12

)3

(1
6
)3

(1
4
)3



1. Successive iteration method

AYk+1 = Y − h2F (x, Yk)

 2 −1 0
−1 2 −1
0 −1 2

y′
1

y
′
2

y
′
3

 =


1

2
0
1

3

− 1

16



(
1

12

)3

(
1

6

)3

(
1

4

)3


y′

1

y
′
2

y
′
3

 =

0.4519
0.4158
0.3741


2. Newton method

Yk+1 = Yk − [J(x, Yk)]
−1G(x, Yk)

G(x, Yk) = AYk + h2F (x, Yk)− Y

Let, f(x, y, y′) = 2y3 hence F (x, Yk) =

2y31
2y32
2y33

 and J(x, Yk) =


1

48
0 0

0
1

12
0

0 0
3

16


B = A+ h2J(x, Yk)

B =

2.0026 −1 0
−1 2.0104 −1
0 −1 2.0234


b = AYk + h2F (x, Yk)− Y

b =

−0.4999
0.00028
0.00094


Yk+1 = Yk −B−1b

Yk+1 =

0.4551
0.4114
0.3705
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Exact Solution Numerical solution
Successive iteration Newton method

1 0.44444 0.4519 0.4551
2 0.4 0.4158 0.3705
3 0.3636 0.3741 0.3705

Example 2: Use the nonlinear finite difference method with h=0.25 to approximate the solution
to the boundary-value problem,

y′′ = −e−2y, 1 ≤ x ≤ 2, y(1) = 0, y(2) = ln(2).

Compare the results to the actual solution lnx.
Solution: Given,

y′′ = −e−2y, 1 ≤ x ≤ 2, y(1) = 0, y(2) = ln(2)

Let, x = [−1,−0.75,−0.5,−0.25, 0] and Y = [0, 0, 0.693147]

Yk = α +
β − α
b− a

(xi − a) =

 0.173286
0.3465735

0.511986025



F (x, Yk) =


f

(
x1, y1,

(
1

2h
(y2 − α)

))
f

(
x2, y2,

(
1

2h
(y3 − y1)

))
f

(
x3, y3,

(
1

2h
(β − y3)

))

 =

e−2y1e−2y2

e−2y3

 =

−0.707107905
−0.50000009
−0.353553486



1. Successive iteration method

AYk+1 = Y − h2F (x, Yk) (13) 2 −1 0
−1 2 −1
0 −1 2

y′
1

y
′
2

y
′
3

 =

 0
0

0.693147

− 1

16

−0.707107905
−0.50000009
−0.353553486

 (14)

y′
1

y
′
2

y
′
3

 =

0.2275817
0.4109692
0.5631066

 (15)

2. Newton method

Yk+1 = Yk − [J(x, Yk)]
−1G(x, Yk)

G(x, Yk) = AYk + h2F (x, Yk)− Y

Let, f(x, y, y′) = 2y3.

Hence F (x, Yk) =

−0.707107905
−0.50000009
−0.353553486

 and J(x, Yk) =

1.4142113, 0, 0
0, 1.999999, 0
0, 02.828426


B = A+ h2J(x, Yk)
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B =

1.9116118 −1 0
−1 1.87500001
0 −1 1.8232234


b = AYk + h2F (x, Yk)− Y

b =

−0.0441957
−0.0312493
−0.0220971


Yk+1 = Yk −B−1b

Yk+1 =

0.2396983
0.4293324
0.5773716


Exact Solution Numerical solution

Successive iteration Newton method
1 0.2231435 0.2275817 0.2396983
2 0.4054651 0.4109692 0.4293324
3 0.5596157 0.5631066 0.5773716

Example 3: Use the nonlinear finite difference method with h=0.25 to approximate the solution
to the boundary-value problem,

y′′ = y′ + 2(y − lnx)3 − x−1, 2 ≤ x ≤ 3, y(2) =
1

2
+ ln 2, y(3) =

1

3
+ ln 3.

Compare the results to the actual solution x−1 + lnx.
Solution: Given,

y′′ = y′ + 2(y − lnx)3 − x−1, 2 ≤ x ≤ 3, y(2) =
1

2
+ ln 2, y(3) =

1

3
+ ln 3

Let, x =

[
2,

9

4
,
5

2
,
11

4

]
, Y =

[
1

2
+ ln 2, 0,

1

3
+ ln 3

]

Yk = α +
β − α
b− a

(xi − a) =

 0.3579
0.71595
1.07392



F (x, Yk) =


f

(
x1, y1,

(
1

2h
(y2 − α)

))
f

(
x2, y2,

(
1

2h
(y3 − y1)

))
f

(
x3, y3,

(
1

2h
(β − y3)

))

 =

−1.584781
1.01606208
1.06882890



1. Successive iteration method

AYk+1 = Y − h2F (x, Yk) 2 −1 0
−1 2 −1
0 −1 2

y′
1

y
′
2

y
′
3

 =


1

2
+ ln 2

0
1

3
+ ln 3

− 1

16

−1.584781
1.01606208
1.06882890
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y′
1

y
′
2

y
′
3

 =

 1.2786342
1.265111089
1.3151089


2. Newton method

Yk+1 = Yk − [J(x, Yk)]
−1G(x, Yk)

G(x, Yk) = AYk + h2F (x, Yk)− Y

Let, f(x, y, y′) = y′ + 2(y − lnx)3 − x−1.

Hence F (x, Yk) =

2(y2 − y0) + 2(y1 − lnx1)
3 − x−11

2(y3 − y1) + 2(y2 − lnx2)
3 − x−12

2(y4 − y0) + 2(y3 − lnx3)
3 − x−13

 and

J(x, Yk) =

0.05412 2 0
−2 0.240818 2
0 −2 0.02330

.

B = A+ h2J(x, Yk)

B =

2.0769639 −0.875 0
−1.125 2.0150511 −0.875

0 −1.125 2.0014562


b = AYk + h2F (x, Yk)− Y

b =

−1.2922988
0.0635839
0.0691702


Yk+1 = Yk −B−1b

Yk+1 =

1.2234811
1.2936432
1.3640761



Exact Solution Numerical solution
Successive iteration Newton method

1 1.25537 1.2786342 1.2234811
2 1.31629 1.2651196 1.2936432
3 1.37523 1.3151089 1.3640761

5 Conclusion
In this paper we studied about Finite difference method which is a powerful method in not

only solving nonlinear algebraic equations with one variable, but also systems of nonlinear al-
gebraic equations. Finite difference methods are also influential in solving for boundary value
problems of nonlinear ordinary differential equations. In finite difference method we can solve
the nonlinear system by three methods they are successive iteration method, Newton’s method
and Crout factorization algorithm. Here, the finite difference method implements both Succes-
sive iteration method and Newton’s method once the boundary value problem was converted
into a nonlinear algebraic system of equations. By the above solved problems we can conclude
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that successive iteration method provide highly accurate values in less number of iteration as
compared with Newton’s method. Several numerical examples are solved to illustrate the effi-
ciency and the performance of the finite difference method. It has better stability than shooting
methods for boundary value problems. Higher-order differences or extrapolation can be used
to improve accuracy. Finite difference method tend to less sensitive to round off error than
shooting method.
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Abstract: Data mining is the process of extracting information from large database or
datasets. Mining can be done by using supervised and unsupervised learning. Classifi-
cation or the supervised learning is a two step process. In the first step, training data are
analyzed by a classification algorithm. In the second step, test data are used to estimate the
accuracy of the classification rules. If the accuracy is considered acceptable, the rules can
be applied to the classification of new data tuples. The learning of classifier is supervised
in that it is told to which class each training tuple belongs. It contrasts with unsupervised
learning or clustering, in which the class label of each training tuple is not known in ad-
vance. The process of grouping a set of physical or abstract objects into classes of similar
objects is called clustering. A cluster is a collection of data objects that are similar to one
another within the same cluster and are dissimilar to the objects in other clusters. Clus-
tering algorithms can be classified into partition-based algorithms, hierarchical based al-
gorithms, density-based algorithms and grid-based algorithms. In this paper we will study
about various data mining classification algorithms like K-nearest Neighbor, Naive Bayes,
Support Vector Machine etc and clustering algorithms like K-Means, Hierarchical cluster-
ing etc.

Keywords: Data mining, Classification algorithms, Naive bayes, KNN, SVM, C4.5, K-
Means, Hierarchical clustering, Decision tree.

1 Introduction
Data Mining (also known as KDD) is defined as the automatic extraction of unidentified,

useful and understandable patterns from large databases [1]. Data Mining has three major
components, Clustering or Classification, Association Rules and Sequence Analysis. In classi-
fication/clustering analyze a set of data and generate a set of grouping rules which can be used
to classify future data.

Classification-rule learning involves finding rules that partition given data into predefined
classes. An association rule is a rule which implies certain association relationships among a
set of objects in a database. Mining association rules may require iterative scanning of large
transaction or relational databases which is quite costly in processing. In sequential Analysis,
we seek to discover patterns that occur in sequence.

2 Classification Algorithms
Classification is used to classify each item in a set of data into one of predefined set of

classes or groups. In the Web domain, Web master or marketer will have to use this technique
if he/she want to establish a profile of users belonging to a particular class or category. This
requires extraction and selection of features that best describe the properties of a given class or
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category [2].

Classification algorithm assigns each instance to a particular class such that classification
error will be least. It is used to extract models that accurately define important data classes
within the given dataset. The classification can be done by using supervised inductive learn-
ing algorithms such as decision tree classifiers, Naive Bayesian classifiers, k-nearest neighbor
classifier, Support Vector Machines etc.

2.1 K- nearest neighbor
KNN is a non-parametric supervised learning technique in which we try to classify the data

point to a given category with the help of training set.

Let (Xi, Ci) where i = 1, 2, . . . n be data points. Xi denotes feature values and Ci denotes
labels for Xi for each i. Assuming the number of classes as ‘c’, Ci ∈ 1, 2, 3, . . . c for all values
of i. Let x be a point for which label is not known, and we would like to find the label class
using k-nearest neighbor algorithms.

KNN Algorithm Pseudo code:
1. Calculate “d(x, xi)” i = 1, 2, . . . n, where d denotes the Euclidean distance between the

points.
2. Arrange the calculated n Euclidean distances in non-decreasing order.
3. Let k be a positive integer, take the first k distances from this sorted list (closest distances).
4. Find those k− points corresponding to these k− distances.
5. Let ki denote the number of points belonging to the ith class among k points i.e. k ≥ 0.
6. If ki > kj∀i 6= j then put x in class j.
Time Complexity: O(nk + nd)

2.2 Naive Bayes
Naive Bayes Classifier is the simple Statistical Bayesian Classifier [3]. It is called Naive

as it assumes that all variables contribute towards classification and are mutually correlated.
This assumption is called class conditional independence. They can predict class membership
probabilities, such as the probability that a given data item belongs to a particular class label. A
Naive Bayes classifier considers that the presence (or absence) of a particular feature(attribute)
of a class is unrelated to the presence (or absence) of any other feature when the class variable
is given. The Naive Bayes Classifier technique is based on Bayesian Theorem and it is used
when the dimensionality of the inputs is high. Bayes Theorem is stated as below:

Let X is a data sample whose class label is not known and let H be some hypothesis, such that
the data sample X may belong to a specified class C. Bayes theorem is used for calculating the
posterior probability P (C|X) from P (C), P (X), and P (X|C).

P (c|x) =
P (x|c)P (c)

p(x)

where P (c|x) is Posterior probability, P (x|c) is Likelihood, P (c) is Class prior probability and
P (x) Predictor prior probability. Also, P (c|X) = P (x1|c)× P (x2|c)× . . .× P (xn|c)× P (c).
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The Naive Bayes classifier [3] works as follows:
1. Let D be the training dataset associated with class labels. Each tuple is represented by n−

dimensional element vector, X = (x1, x2, x3, . . . , xn).
2. Consider that there are m classes C1, C2, C3, . . . , Cm. Suppose that we want to classify an

unknown tuple X , then the classifier will predict that X belongs to the class with higher
posterior probability, conditioned on X . i.e., the Naive Bayesian classifier assigns an un-
known tuple X to the class Ci if and only if P (Ci|X) > P (Cj|X) for 1 ≤ j ≤ m and i 6= j,
above posterior probabilities are computed using Bayes Theorem.

Time Complexity: O(Np), where N is the number of training examples and p is the number
of features.

2.3 Support vector machines (SVM)
Support Vector Machine (SVM) [4] is primarily a classier method that performs classifi-

cation tasks by constructing hyperplanes in a multidimensional space that separates cases of
different class labels. SVM supports both regression and classification tasks and can han-
dle multiple continuous and categorical variables. For categorical variables a dummy vari-
able is created with case values as either 0 or 1. Thus, a categorical dependent variable
consisting of three levels, say (A,B,C), is represented by a set of three dummy variables:
A : (100), B : (010), C : (001).

To construct an optimal hyperplane, SVM employs an iterative training algorithm, which is
used to minimize an error function.

In a two-class learning task, the aim of SVM is to find the best classification function to
distinguish between members of the two classes in the training data. The metric for the concept
of the “best” classification function can be realized geometrically. For a linearly separable
dataset, a linear classification function corresponds to a separating hyperplane f(x) that passes
through the middle of the two classes, separating the two. Once this function is determined, new
data instance xn can be classified by simply testing the sign of the function f(xn); xn belongs
to the positive class if f(xn) > 0. Because there are many such linear hyperplanes, what
SVM additionally guarantee is that the best such function is found by maximizing the margin
between the two classes. Intuitively, the margin is defined as the amount of space, or separation
between the two classes as defined by the hyperplane. Geometrically, the margin corresponds
to the shortest distance between the closest data points to a point on the hyperplane. Having
this geometric definition allows us to explore how to maximize the margin, so that even though
there are an infinite number of hyperplanes, only a few qualify as the solution to SVM. The
reason why SVM insists on finding the maximum margin hyperplanes is that it offers the best
generalization ability. It allows not only the best classification performance (e.g. accuracy) on
the training data, but also leaves much room for the correct classification of the future data. To
ensure that the maximum margin hyperplanes are actually found, an SVM classifier attempts
to maximize the following function with respect to w, b

Lp =
1

2
‖w‖2 + C

n∑
i=1

ξi −
n∑
i=1

αi{yi(xTi w + b)− 1 + ξi} −
n∑
i=1

µiξi

where n is the number of training examples and αi,i, i = 1, . . . , t are non-negative numbers
such that the derivatives of LP with respect to αi are zero. αi are the Lagrange multipliers and
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LP is called the Lagrangian. In this equation, the vectorsw and constant b define the hyperplane.

Time Complexity: O(N3),where n is the number of free support vectors.

2.4 Decision Tree Induction

A decision tree is a flow chart like tree structure, where each node denotes test on an attribute
value, each branch represents the result of the test, and tree leaves represent classes [5]

General idea: Recursively partition data into sub-groups
? Select an attribute and formulate a logical test on attribute
? Branch on each outcome of test, move subset of examples (training data) satisfying that

outcome to the corresponding child node.
? Run recursively on each child node.
? Termination rule specifies when to declare a leaf node.
? If all instances are correctly classified - stop.
? If an instances is incorrectly classified, add it to the initial subset and construct a new tree.
? Iterate until, A tree is built that classifies all instance correctly OR A tree is built from the

entire training set
? Decision tree learning is a heuristic, one-step look ahead (hill climbing), non-backtracking

search through the space of all possible decision trees. Decision trees are simple to under-
stand and provide good results even with small data. Decision tree induction algorithms can
be used for classification in many application areas, such as Education, Medicine, Manufac-
turing, Production, Financial analysis, Fraud Detection and Astronomy etc. There are several
data mining algorithms such as C4.5, ID3, CART, J48, NB Tree, REP Tree etc.

Complexity Building a tree O(mn log n)
Sub tree replacement O(n)
Sub tree raising O(n(n log n)2

Every instance may have to be redistributed at every node between its leaf and the rootO(n log n)
Cost for redistribution(on average) O(log n)
Total Cost O(mn log n) +O(n(n log n)2. [6]

2.5 C4.5

C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan [7]. C4.5
is an extension of Quinlan’s earlier ID3 algorithm. C4.5 is implemented recursively with this
following sequence

(i) Check if algorithm satisfies termination criteria.
(ii) Computer information-theoretic criteria for all attributes.

(iii) Choose best attribute according to the information-theoretic criteria.
(iv) Create a decision node based on the best attribute in step (iii).
(v) Induce (i.e. split) the dataset based on newly created decision node in step (iv).

(vi) For all sub-dataset in step (v), call C4.5 algorithm to get a sub-tree (recursive call).
(vii) Attach the tree obtained in step (vi) to the decision node in step (iv).

(viii) Return tree.
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3 Clustering Algorithms

Clustering is a common technique for statistical data analysis, which is used in many fields.
Clustering can be classified into the following categories: Partitioning clustering, Hierarchical
clustering , Density based clustering, Model based clustering, Grid based clustering. These
methods vary in
? the procedures used for measuring the similarity (within and between clusters)
? the use of thresholds in constructing clusters
? the manner of clustering, that is, whether they allow objects to belong to strictly to one

cluster or can belong to more clusters in different degrees and the structure of the algorithm.
Irrespective of the method used, the resulting cluster structure is used as a result in itself, for
inspection by a user, or to support retrieval of objects [8].

Partitioning Algorithms

Partitioning Clustering split the data into k divisions ,where each division represent a clus-
ter, k ≤ n, where n is the number of data points. Partitioning methods are based on the idea that
a cluster is represented by a centre point. The cluster must exhibit the following two properties
? each collection should have at least one object
? every object should belong to accurately one collection.
The drawback of this algorithm is whenever a point is close to the center of another cluster, it
gives poor outcome due to overlapping of data points. It uses number of greedy heuristics of
iterative optimization.

Partitioning cluster methods are: K-Means, K-Mediods method, PAM (Partitioning around
Mediods), CLARA (Clustering Large Applications).

3.1 K-Means Algorithm

It is a centroid based technique. This algorithm takes the input parameters k and partition
a set of n objects into k clusters that the resulting intra-cluster similarity is high but the inter-
cluster similarity is low. The method can be used by cluster to assign rank values to the cluster
categorical data is statistical method. k mean is mainly based on the distance between the ob-
ject and the cluster mean. Then it computes the new mean for each cluster. Here categorical
data have been converted into numeric by assigning rank value [9].

Algorithm: In this we take k the number of cluster and D as data set containing an object. In
this output is stored as a set of k clusters. Algorithm follows some steps these are
Step 1 Randomly choose k object from D as initial cluster center.
Step 2 Calculate the distance from the data point to each cluster.
Step 3 If the data point is closest to its own cluster, leave it where it is. If the data point is not
closest to its own cluster, move it into the closest cluster.
Step 4 Repeat step 2 and 3 until best relevant cluster is found for each data.
Step 5 Updates the cluster means and calculate the mean value of the object for each cluster.
Step 6 Stop (every data is located in a proper positioned cluster)
Time Complexity: O(n2), where n is the input data size.
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3.2 Hierarchical Clustering
Hierarchical algorithms find successive clusters using previously established clusters, whereas

partitional algorithms determine all clusters at a time. Hierarchical algorithms can be agglom-
erative (bottom-up) or divisive (top-down). Agglomerative algorithms begin with each element
as a separate cluster and merge them in successively larger clusters. Divisive algorithms begin
with the whole set and proceed to divide it into successively smaller clusters. The decision of
merging two clusters is taken on the basis of closeness of these clusters.

Time Complexity: O(n2 log n)

There are multiple metrics for deciding the closeness of two clusters :
? Euclidean distance: ‖a− b‖2 =

√
Σ(ai − bi)

? Squared Euclidean distance: ‖a− b‖22 =
√

Σ(ai − bi)2
? Manhattan distance: ‖a− b‖1 = Σ(ai − bi)
? Maximum distance: ‖a− b‖ INFINITY = maxi‖ai − bi‖
? Mahalanobis distance:

√
(a− b)TS − 1(−b) where S is a covariance matrix

3.3 Agglomerative Hierarchical clustering
This algorithm works by grouping the data one by one on the basis of the nearest distance

measure of all the pairwise distance between the data point. Again distance between the data
point is recalculated but which distance to consider when the groups has been formed. For this
there are many available methods. Some of them are:
1. Single-nearest distance or single linkage.
2. Complete-farthest distance or complete linkage.
3. Average-average distance or average linkage.
4. Centroid distance.
5. Ward’s method - sum of squared Euclidean distance is minimized.

This way we go on grouping the data until one cluster is formed. Now on the basis of den-
dogram graph we can calculate how many number of clusters should be actually present.

Algorithmic steps for Agglomerative Hierarchical clustering
Let X = {x1, x2, x3, . . . , xn} be the set of data points.

i) Begin with the disjoint clustering having level L(0) = 0 and sequence number m = 0.
ii) Find the least distance pair of clusters in the current clustering, say pair (r), (s), according

to d[(r), (s)] = min d[(i), (j)] where the minimum is over all pairs of clusters in the
current clustering.

iii) Increment the sequence number: m = m + 1. Merge clusters (r) and (s) into a single
cluster to form the next clusteringm. Set the level of this clustering to L(m) = d[(r), (s)].

iv) Update the distance matrix,D, by deleting the rows and columns corresponding to clusters
(r) and (s) and adding a row and column corresponding to the newly formed cluster. The
distance between the new cluster, denoted (r, s) and old cluster(k) is defined in this way:
d[(k), (r, s)] = min (d[(k), (r)], d[(k), (s)]).

v) If all the data points are in one cluster then stop, else repeat from step ii).

Divisive Hierarchical clustering: It is just the reverse of Agglomerative Hierarchical ap-
proach.
Time Complexity: O(n3)
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Table 1: Comparison of classification algorithms

Algorithm Pros Cons
Decision
Tree [10]

? It is easy to understand.
? It provides fast result in classifying

unknown records.
? It provides good results with small

size tree. Results does not affect
with outliers.

? It does not require preparation
method like normalization.

? It also works well with numeric
data.

? It can’t predict the value of a contin-
uous class attribute.

? It provides error prone results when
too many classes are used.

? Irrelevant attribute affect construc-
tion of decision tree in a bad man-
ner.

? Small change in data can change the
decision tree completely.

? It is sensitive to noise.

C4.5 ? It uses both continuous and discrete
data.

? It avoids over fitting of data.
? It improves computational effi-

ciency,easy to implement.
? Deals with noise.
? Build models can be easily inter-

preted.
? It handles training data with missing

and numeric value.

? It requires that target attribute will
have only discrete values.

? Overfitting
? Does not work very well on a small

training dataset.
? Small variation in data can lead to

different decision trees.

SVM [5] ? High accuracy
? Work well even if data is not linearly

separable in the base feature space.

? Speed and size requirement both in
training and testing is more.

? It is sensitive to noise.
? High complexity and extensive

memory requirements for classifica-
tion in many cases.

KNN ? It performs better with missing data.
? It is easy to implement and debug.
? It provides more accurate results.
? Some noise reduction techniques are

used that improve the accuracy of
classifier.

? Classes need to be linearly separa-
ble.

? Zero cost of the learning process.
? Sometimes it is robust with regard to

noisy training data.
? Well suited for multimodal classes.

? It has poor run time performance
time to find the nearest neighbours
in a large training set can be exces-
sive

? It requires high calculation com-
plexity.

? It considers no weight difference be-
tween samples.

? It is sensitive to irrelevant attributes
.

? Performance of algorithm depends
on the number of dimensions used.
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Naive
Bayesian

? It provides high accuracy and speed
on large database.

? It has minimum error rate in com-
parison to all other classifiers.

? It is easy to understand, implement.
? It is not sensitive to irreverent fea-

tures.
? It handles streaming data well.
? It can also handle real and discrete

values.
? Great computational efficiency and

classification rate.
? When assumption of independence

holds, a Naive Bayes classifier per-
forms better compare to other mod-
els.

? If categorical variable has a cate-
gory (in test data set), which was not
observed in training data set, then
model will assign a zero probability
and will be unable to make predic-
tion. This is often known as “Zero
frequency”. To solve this, we can
use simplest smoothing techniques
like Laplace estimation.

? It assumes independence of fea-
tures. So it provides less accuracy
in case of independent predictors.

? The precision of algorithm de-
creases if the amount of data is less.

Table 2: Comparison of Clustering Algorithms

Algorithm Pros Cons
K-means ? Feasible and Scalable [11]

? KNN is well suited for multi-modal
classes as well as applications in which
an object can have many class labels [4]

? Its effective in dealing with large data
sets.

? Works well with clusters having convex
shapes.

? It frequently terminates at local opti-
mum.

? Gives best result when data set are dis-
tinct or well separated from each other.

? Sensitive to initial parame-
ter K (number of clusters).
It can only be used when
mean is defined and k is
specified.

? Unable to handle noise
? Generally terminates at lo-

cal optimum, not at global
optimum.

? It fails for categorical data.
? It works just on numeric

values.

Hierarchical
Agglomerative
Clustering

? Can handle large dataset.
? Reduced execution time due to paral-

lelism
? Increase in efficiency
? It has embedded flexibility with regard

to the level of granularity and it is easy
to handle any forms of similarity or
distance and applicable to any attribute
types.

? Performs clustering well with spherical
data

? Increase in efficiency is
only linear.

? It does not revisit once con-
structed clusters with the
purpose of improvement.
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Figure 1: Showing the result of k-means for
‘N’ = 60 and ‘c’= 3

Figure 2: Showing the non-linear data set
where k-means algorithm fails

4 Conclusion

In this paper analysis of classification and clustering algorithms has been made. The pros
and cons of classification algorithms and clustering algorithms are listed. Under classification
algorithms, Naive Bayes, SVM, KNN, Decision tree induction have been studied.

Decision Tree’s algorithms are more accurate and they have less error rate and they are eas-
ier algorithms as compared to K-NN and Bayesian. C4.5 is the most prominent among decision
tree algorithms.The steps of C4.5 are listed and its pros and cons are studied.

The challenge with clustering analysis is mainly that different clustering techniques give
substantially different results on the same data. Moreover, there is no algorithm present which
gives all the desired outputs. Under clustering algorithms K− Means and Hierarchial cluster-
ing algorithms have been studied.

The time complexities of all the algorithms have been studied. The comparative study
has shown that each algorithm has its own set of advantages and disadvantages as well as its
own area of implementation. None of the algorithm can satisfy all constraints and criteria.
Depending on application and requirements, specific algorithm can be chosen.
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Abstract: Integral transform provides powerful operational method for solving initial
value problem and initial boundary value problem for linear differential equations, dif-
ference equations, integral equations and many more arising problems in applied mathe-
matics, mathematical physics and engineering science. In this project we touch on a type
of integral transform called Stieltjes transform and Generalized Stieltjes transform, its def-
inition, a few examples and its properties. We also look into Fourier-Stieltjes transforms
and its applications to solve heat, wave and Laplace equations.
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1 Introduction
The concept of an integral transform follows directly from Fourier’s theorem. Their widespread

use in modern technology is due to the work of British mathematician, Oliver Heaviside. The
integral transform of function f(x) for x ∈ [a, b] is defined as [1]

I{f(x)} = F (t) =

b∫
a

K(x, t)f(x) dx

where K(x, t) is called the Kernel of the transform. In integral transform, we transform the
unknown function, f(x), to a different function say F (t).

In recent years integral transforms have become an essential tool in solving many mathe-
matical problems. There are many other integral transformations like the Mellin transforms,
Hankel transforms, Hilbert transforms, Stieltjes transforms, Laguerre transforms, Legendre
transforms, Hermite transforms and many more, which find its applications in various branches
of science. One form may be obtained from the other by transforming one of the coordinates
or the functions. Depending on the type of the equation and the domain considered, a suit-
able integral transform can be chosen so as to simplify the computational techniques. Two of
the most famous and widely used integral transforms are the Fourier transforms and Laplace
transforms. The Laplace transform is used in solving initial value problems while the Fourier
transform is used in solving boundary value problems, which are plenty in the analysis of time
varying waveforms [2, 3, 4].

The Stieltjes transform is named after Thomas Joannes Stieltjes, who was a Dutch math-
ematician. He was a pioneer in the field of moment problems and contributed widely to the
study of continued fractions and field analysis. The Riemann-Stieltjes integral which is named
after Bernhard Riemann and Thomas Stieltjes, is the generalization of Riemann integral. The
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Laplace Stieltjes transform is an integral transform applied only to the Fourier transform in it’s
utility in solving physical problems. It is useful in solving linear ordinary differential equations
like those arising in the analysis of electronic circuits. The Stieltjes transform is applicable in
music as stieltjies transform is used in Random matrix theory (RMI)[5, 6].

Definition of Stieltjes Transform, Generalized Stieltjes Transform and Fourier-
Stiletjes Transform

The Stieltjes transform of a function f(t) is derived by using the Laplace transform of a
function f(t) with respect to s. Thus Stieltjes transform of a function f(t) is defined as

S{f(t)} = f̃(z) =

∞∫
0

f(t)

t+ z
dt

The Generalized Stieltjes transform of a function f(t) and a non-negative measure p on
[0,∞) is defined as follows

Sg{f(t)} = f̃(z, p) =

∞∫
0

f(t)

(t+ z)p
dt

The measure p is considered to produce a convergent integral for each z ∈ C and has a compact
support to the Stieltjes functions, also known as Markov function.

The Fourier-Stieltjes transform is defined as [7]

FS{f(t, x)}(s, p) =

∞∫
0

∞∫
0

e−ist(x+ y)−p dt dx

where ‘t’ and ‘x’ are called positive real numbers.

2 Properties of Stieltjes Transforms and Generalized Stielt-
jes Transforms

Theorem 1. If S{f(t)} = f̃(z) then S{tf(t)} = −zf̃(z) +

∞∫
0

f(t)dt.

Proof. Using the definition of Stieltjes transformation, we have

S{tf(t)} =

∞∫
0

tf(t)

t+ z
dt

Adding and subtracting z in the numerator of the above integral, we have

S{tf(t)} =

∞∫
0

f(t)dt− zf̃(z)
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Theorem 2. If S{f(t)} = f̃(z) then S
{
f(t)

t+ a

}
=

1

(a− z)

[
f̃(z)− f̃(a)

]
Proof. Using the definition of Stieltjes transformation, we have

S

{
f(t)

t+ a

}
=

∞∫
0

f(t)

(t+ a)(t+ z)
dt

=

∞∫
0

1

(a− z)

[
f(t)

(t+ z)
dt− f(t)

(t+ a)
dt

]
=

1

a− z
[f̃(z)− f̃(a)]

Theorem 3. If S{f(t)} = f̃(z) then S
{

1

t
f
(a
t

)}
=

1

z
f̃
(a
z

)
, a > 0

Proof. Using the definition of Stieltjes transformation, we have

S

{
1

t
f
(a
t

)}
=

∞∫
0

f
(a
t

)
t(t+ z)

dt

=

∞∫
0

1

t(t+ z)
f(τ)

(
− a

τ 2

)
dτ

(
Substituting

a

t
= τ
)

=

∞∫
0

f(τ)

(a+ zτ)
dτ

=
1

z
f̃
(a
z

)

Theorem 4. If Sg{f(t)} = f̃(z, p) then Sg{tf(t)} = f̃(z, p− 1)− zf̃(z, p).

Proof. Using the definition of generalized Stieltjes transformation, we have

Sg{tf(t)} =

∞∫
0

tf(t)

(t+ z)p
dt

Adding and subtracting z in the numerator, we have

Sg{tf(t)} =

∞∫
0

f(t)

(t+ z)p−1
dt− z

∞∫
0

f(t)

(t+ z)p
dt

= f̃(z, p− 1)− zf̃(z, p)
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Theorem 5. If Sg{f(t)} = f̃(z, p) then

Sg{f ′(t)} = pf̃(z, p+ 1)− z−pf(0) for f(t)→ 0 when t→∞.

Proof. Using the definition of Generalized Stieltjes transformation, we have

Sg{f ′(t)} =

∞∫
0

f ′(t)(t+ z)−pdt

=

[
f(t)

(t+ z)p

]∞
0

+ p

∞∫
0

f(t)

(t+ z)p+1
dt

= pf̃(z, p+ 1)− f(0)

zp
(since f(t)→ 0 as t→∞)

Theorem 6. If Sg{f(t)} = f̃(z, p) then Sg


t∫

0

f(x)dx

 =
f̃(z, p− 1)

(p− 1)
, Re(p) > 1.

Proof. Let g(t) =

t∫
0

f(x)dx

g′(t) = f(t) and g(0) = 0

Then Sg{f(t), p} = Sg{g′(t), p}
= p g̃(z, p+ 1)

= p Sg{g(t), p+ 1}
Sg{f(t), p− 1} = (p− 1)Sg{g(t), p}

Sg


t∫

0

f(x)dx

 =
1

p− 1
f̃(z, p− 1)

3 Examples on Stieltjes Transforms and Generalized Stielt-
jes Transforms

Example 1: Find the Stieltjes transform of the following functions: [8]

(i) f(t) = tα−1 (ii) f(t) =
tα−1

t+ a
(iii) f(t) =

t

t2 + a2

By the definition of Stieltjes transformation we have

(i)S{tα−1} =
1

z

∞∫
0

tα−1
(

1 +
t

z

)
t−1dt
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= zα−1
∞∫
0

xα−1

(1 + x)
dx

(
Substituting

t

z
= x

)

= zα−1M

{
1

1 + x

} since M
{

1

1 + x

}
=

∞∫
0

xα−1

1 + x
dx


= zα−1π csc(απ)

(
since M

{
1

1 + x

}
= Γ(p)Γ(1− p)

)

(ii) S
{
tα−1

t+ a

}
=

∞∫
0

tα−1

t+ z
dt

=
1

(a− z)

z−1 ∞∫
0

(
1 +

t

z

)−1
tα−1dt− a−1

∞∫
0

(
1 +

t

a

)−1
tα−1dt


Substituting

t

z
= p and

t

a
= q in the above integral, we obtain

S

{
tα−1

t+ a

}
=

1

(a− z)

zα−1 ∞∫
0

pα−1

(1 + p)
dp− aα−1

∞∫
0

qα−1

(1 + q)
dq


=

1

(a− z)

[
zα−1M

{
1

1 + p

}
dp− aα−1M

{
1

1 + q

}
dq

]
=

1

(a− z)
[zα−1 − aα−1]π csc(πα)

(iii) S
{

t

(t2 + a2)

}
=

∞∫
0

t

(t2 + a2)(t+ z)
dt

=
1

a2 + z2

∞∫
0

1

t+ z
dt−

∞∫
0

t

a2 + t2
dt+

∞∫
0

z

a2 + t2
dt

=
1

a2 + z2

[πa
2

+ z log
(z
a

)]
Example 2: Find the generalized Stieltjes transform of the following functions:[9]

(i) tα−1 (ii) exp(−at)

By the definition of generalized Stieltjes transformation, we have

(i) Sg{tα−1} =

∞∫
0

tα−1

(t+ z)p
dt

= zα−p
∞∫
0

uα−1

(1 + u)p
z du (Substituting t = zu )
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On substituting x =
u

1 + u
or u =

x

1− x
in the above integral, we get

Sg{tα−1} = zα−1
∞∫
0

xα−1(1− x)p−α−1dx

= zα−1β(α, p− α)

=
Γ(α)Γ(p− α)

Γ(p)
zα−1

(ii) Sg{exp(−at)} =

∞∫
0

exp(−at)
(t+ z)p

dt

=

∞∫
0

exp(a(u− z))

up
du (Substituting t+ z = u)

= exp(az)

∞∫
0

e−auu−pdu

= ap−1 exp(az)Γ(1− p) (Substituting au = x )

4 Applications of Fourier-Stieltjes Transforms
Mathematicians have more techniques to chose from while solving problems related to

physical equations, integral equations and differential equations which have many applications
in all fields of sciences. Using Fourier-Stieltjes transform we can obtain the solution for Wave
equation, Heat flow equation and Laplace equation. The following are a few results which is
required in solving the problems in Fourier-Stieltjes transforms [10, 7]

FS{fx(t, x)} = pFS{f(t, x)} − k (1)

FS{fn(t, x)} = pnFS{f(t, x)} − pn−1k (2)

FS{ft(t, x)} = isFS{f(t, x)} − k (3)

FS{fn(t, x)} = (is)nFS{f(t, x)} − (is)nFSf(t, x)− (is)n−1k (4)

Application of Fourier-Stieltjes Transforms to Partial Differential Equa-
tions
Example 3: Find the Fourier-Stieltjes transform of the wave equation with the boundary con-
ditions given by f(t, 0) = 0 and f(t, a) = 0.

Consider the wave equation
∂2f

∂t2
= c2

∂2f

∂x2

Taking the Fourier-Stieltjies transform of the above equation, we get

FS{ftt(t, x)} = c2FS{fxx(t, x)}
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Applying the result (2) and (4) to the above expression, we obtain

(is)2FS{f(t, x)} − (is)k = c2p2FS{f(t, x)} − pk

D2
xFS{f(t, x)} =

(is)2

c2
FS{f(t, x)} − is

c2
k(

D2
x −

(is)2

c2

)
FS{f(t, x)} =

−is
c2

k

This is an ordinary differential equation with respect to x. After finding the complementary
function and particular integral, the solution obtained is

FS{f(t, x)} = c1 cos
sx

c
+ c2 sin

sx

c
+
k

is
(5)

Substituting the boundary conditions we obtain c1 = − k
is

and c2 =
k

is

(
cot

s

c
a− csc

s

c
a
)

.
Thus equation (5) becomes

FS{f(t, x)} =
k

is

((
cot

s

c
a− csc

s

c
a
)

sin
s

c
− cos

s

c
x+ 1

)

Example 4: Find the Fourier-Stieltjies transform of the Laplace equation with the boundary
conditions given by f(t, 0) = 0 and f(t, a) = 0.

Consider the Laplace equation
∂2f

∂x2
+
∂2f

∂t2
= 0

By the definition of Fourier-Stieltjies integral transformation, we have

FS{f(t, x)} =

∞∫
0

∞∫
0

e−ist(x+ y)−pdt dx

Applying the Fourier-Stieltjies transform to the above equation, we get

FS{fxx(t, x)}+ Fs{ftt(t, x)} = 0

Applying the result(2) and (4) to the above expression, we obtain

D2FS{f(t, x)} − pk + (is)2FS{f(t, x)} − (is)k = 0

D2
xFS{f(t, x)}+ (is)2FS{f(t, x)} − isk = 0

(D2
x + (is)2)FS{f(t, x)} = isk

This is an ordinary differential equation with respect to x. After finding the complementary
function and particular integral, the solution obtained is

FS{f(t, x)} = c1e
sx + c2e

−sx +
k

is

since k =

∞∫
0

y−pf(t, 0)e−istdt

 (6)
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Substituting the boundary conditions we obtain c1 = c2−
k

is
and c2 =

k(1− esa)
is(esa − e−sa)

. Thus

equation (6) becomes

FS{f(t, x)} =
k

is

(
1− e−sa

e−sa − esa

)
esx +

k

is

(
1− esa

esa − e−sa

)
e−sx +

k

is

Example 5: Find the Fourier-Stieltjies transform of the heat equation with the boundary con-
ditions given by f(t, 0) = 0 and f(t, a) = 0.

Consider the heat equation
∂f

∂t
= c2

∂2f

∂x2
where c2 =

1

ps

By the definition of Fourier-Stieltjies integral transformation we have

FS{f(t, x)}(s, p) =

∞∫
0

∞∫
0

f(t, x)e−ist(x+ y)−p

Taking the Fourier-Stieltjies transform of the above equation, we get

FS{ft(t, x)}(s, p) = c2FS{fxx(t, x)}(s, p)

Applying the result (2) and (4) to the above expression, we obtain

isFS{f(t, x)}(s, p)− k = c2P 2FS{f(t, x)}(s, p)− pk(
D2
x −

is

c2

)
FS{f(t, x)}(s, p) = − k

c2

This is an ordinary differential equation with respect to x. On solving we obtain

FS{f(t, x)}(s, p) = c1 cos

√
s√
ic
x+ c2 sin

√
s√
ic
x+

k

is
(7)

Using the boundary conditions we have c1 =
−k
is

and c2 =
k

is
+

(
cot

√
s√
ic
a− csc

√
s√
ic
a

)
.

Thus (7) becomes

FS{f(t, x)}(s, p) =
k

is

[(
cot

√
s√
ic
a− csc

√
s√
ic
a

)
sin

√
s√
ic
x− cos

√
s√
ic
x+ 1

]

5 Conclusion
In this paper we have studied about an integral transform called Stieltjes transform and Gen-

eralized Stiletjes transform, through various examples and basic properties defined on them. We
also learnt about solving the Wave equation, the Heat equation and the Laplace equation with
Fourier-Stiletjes transform.
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Abstract: In this paper, we discuss the general description of Adomian decomposition
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ferential equations and singular boundary value problems using Adomian decomposition
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use step by step method for finding the solution and it has a faster convergence to the exact
solution.
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1 Introduction

1.1 Adomian decomposition method
Adomian decomposition method is very useful for solving linear and nonlinear ordinary

and partial differential equations and also algebraic equations. Many modifications were made
on this method by numerous researchers in an attempt to improve the accuracy and extend the
applications of this method [1].

The Adomian Decomposition method provides several significant advantages. It also han-
dles the problem in a direct way without using linearization or any other restrictive assumptions.
It provides an efficient numerical solution in the form of an infinite series that is obtained iter-
atively and converges to the exact solution using Adomian polynomials. The main advantage
of this method is that it is capable of reducing the size of computational work without affect-
ing the accuracy of the numerical solutions. The crucial aspect of this method is the Adomian
polynomials which allow the solution for convergence of the nonlinear portion of the equation,
without linearizing the system. This technique is very simple in an abstract formulation but the
difficulty arises in calculating the polynomials and in proving the convergence of the series of
functions [2].

These polynomials mathematically generalize to a Maclaurin series. We conclude that the
Adomian decomposition method is an better approximation, which approximates the exact
power series solution compared to other methods.

1.2 Adomian polynomials
Adomian polynomials decompose a function into a sum of components for a nonlinear

operator. They are found to be uniformly convergent series of analytic functions and are derived
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from unique formula. They provide the fastest rate of convergence of decomposition series for
the nonlinear function [3]. The Adomian polynomial is given by,

An =
1

n!

dn

dλn

[
N(

n∑
i=0

λixi)

]
λ=0

∀n = 0, 1, 2 · · · .

2 Applications
1. Adomian decomposition method has extensive applications in fields such as physics,

biology, chemistry and engineering.
2. Adomian method is applied to heat or mass transfer, particle transfer, nonlinear optics

and the fermentation process.
3. Adomian method has been applied to several problems like to develop an analytic solu-

tion for a steady flow problem of a viscous incompressible fluid as governed by Navier-
Stokes equations.

4. By comparing the ADM results of a simple problem of Poisson’s equation with results of
a numerical solution then the ADM to a reliable technique with less computational work.

5. Adomian method is applied for the linear and nonlinear Fokker-Planck equation.
6. Adomian method is used in solving some nonlinear oscillation equations and nonlinear

heat transfer equations.
7. Adomian method is used in solving microchip laser problem equations.

3 Adomian decomposition method for quadratic equations

3.1 Method of solution
Consider a quadratic equation,

ax2 + bx+ c = 0. (1)

The principle of the Adomian decomposition method of nonlinear equation is in the following
form,

Lx+Nx = g

Lx = g −Nx

where, N is nonlinear operator and L is highest order derivative which is invertible hence L−1

is integral operator. Equation (1) can be rewritten as,

bx = −c− ax2.

Dividing throughout by b we get,

x = −
(c
b

)
−
(a
b

)
ax2.

The solution of x is now decomposed into components x0 + x1 + · · · where x0 is taken as
−c
b

and x1, x2 · · · are still to be identified.
Since x0= -

c

b
we have,

x = x0 −
a

b
x2 (2)
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x = x0 −
a

b

∞∑
n=0

An (3)

The nonlinear term x2 in equation(2) is replaced by
∞∑
n=0

An, where, A(x0, x1, · · · xn) refers to

An where,
An =

1

n!

dn

dλn

[
N(

n∑
i=0

λixi)

]
λ=0

∀n = 0, 1, 2 · · · (4)

Equation (4) is known as Adomian polynomials.
The An’s are given by,

A0 =
1

0!

d0

dλ0

N 0∑
i=0

λixi


λ=0

A0 =
d0

dλ0
N(x0) = x20

A1 =
1

1!

d

dλ

N 1∑
i=0

λixi


λ=0

A1 = x1N
′(x0) = 2x0x1

A2 = x2N
′(x0) +

x21
2!
N ′′(x0)

A2 = x21 + 2x0x2

A3 = x3N
′(x0) +

2x1x2
2!

N ′′(x0) +
x31
3!
N ′′′(x0)

A3 = 2x0x3 + 2x1x2

A4 = x22 + 2x0x4 + 2x1x2
...
...

Substituting theseA1, A2, A3, A4, · · · values in equation (3) then n-term approximation is given
by,

φn =
n−1∑
i=0

xi (5)

Equation (5) gives the approximate value closer to the root [4].

4 Adomian decomposition method for singular boundary value
problems

4.1 Method of solution
Consider the singular boundary value problems of the form [5]

(xαy′)′ = f(x, y) (6)
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subject to boundary conditions,
y(0) = A
y(1) = B

The linear differential operator Lxx is defined by

Lxx[·] =
d

dx

(
xα

d

dx
[·]
)

(7)

The inverse operator L−1xx is defined by

L−1xx [·] =

∫ x

0

(x−α)

∫ x

0

[·]dxdx (8)

Operating with L−1xx on (7) we get ,

y = y(0) +

∫ x

0

(x−α)

∫ x

0

f(x, y)dxdx (9)

Assuming that f(x, y) = r(x)g(y) where g(y) is the nonlinear term then

y =
∞∑
n=0

yn

g(y) =
∞∑
n=0

An

(10)

where An is given by

An =
1

n!

 dn

dλn
g

 ∞∑
i=0

λiyi


λ=0

(11)

Then,
y0 = y(0)

yn+1 =

∫ x

0

x−α
∫ x

0

r(x)Andxdx

5 Examples and Discussions

Example 1: Find the root of the polynomial (x− 1
4
)(x− 100) = 0.

Solution: Given, x2 − 401
4
x+ 25 = 0

The given quadratic equation is simplified in the form,

x = 0.2493 + 0.0099x2

Let x2 is replaced by Adomian polynomials then,

x = 0.2493 + 0.0099
∞∑
n=0

An = 0.2493 + 0.0099(A0 + A1 + A2 + A3 + A4 + · · · )
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where,

A0 = x20
A1 = 2x0x1

A2 = x21 + 2x0x2
...

Then,

x0 = 0.2493

A0 = x20 = 0.06215

x1 = 0.0099A0 = 0.0006

A1 = 2x0x1 = 0.00030

x2 = 0.0099A1 = 0.0000003

The n-term approximation is given by

φn =

n−1∑
i=0

xi

φ1 = x0 = 0.2493

φ2 = x0 + x1 = 0.2499

φ3 = x0 + x1 + x2 = 0.2499

which is approximately close to the root x = 0.25

Example 2: Find the root of the polynomial (x− 1
4
)(x− 1) = 0

Solution: Given, x2 − 1.25x+ 0.25 = 0
The given quadratic equation is simplified in the form :

x = 0.2 + 0.8x2

Let x2 is replaced by Adomian polynomial then,

x = 0.2 + 0.8
∞∑
n=0

An = 0.2 + 0.8(A0 + A1 + A2 + A3 + A4 + · · · )

where,

A0 = x20
A1 = 2x0x1

A2 = x21 + 2x0x2

A3 = 2x0x3 + 2x1x2

A4 = 2x0x4 + 2x1x3 + x22
...
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Then,

x0 = 0.2

A0 = x20 = 0.04

x1 = 0.8A0 = 0.032

A1 = 2x0x1 = 0.0128

x2 = 0.8A1 = 0.01024

A2 = x21 + 2x0x2 = 0.00512

A3 = 2x0x3 + 2x1x2 = 0.0022536

x4 = 0.8A3 = 0.001

The n-term approximation is given by

φn =

n−1∑
i=0

xi

φ1 = x0 = 0.2

φ2 = x0 + x1 = 0.232

φ3 = x0 + x1 + x2 = 0.242

φ4 = x0 + x1 + x2 + x3 = 0.246

φ5 = x0 + x1 + x2 + x3 + x4 = 0.247

which is approximately close to the root x = 0.25
Example 3: Consider the nonlinear singular equation y′′+ 1

x
y′ = y3− 3y5 subject to boundary

conditions, y(0) = 1, y(1) = 1√
2

Solution: Given, y′′ + 1
x
y′ = y3 − 3y5, y0 = 1

The given equation is rewritten in the form,

(xy′)′ = x(y3 − 3y5)

The recurrence relation is given by,

yn+1 =

∫ x

o

x−1
∫ x

0

[xAn]dxdx

where the Adomian polynomial is given by,

An =
1

n!

[
dn

dλn
N

(
n∑
i=0

λiyi

)]

For n = 0,

A0 = N(y0) = y30 − 3y50 = (−2)

y1 =

∫ x

0

x−1
∫ x

0

[xA0]dxdx
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y1 = −x
2

2

For n = 1,

A1 = y1N
′(y0) = y1[3y

2
0 − 15y40] = 6x2

y2 =

∫ x

0

x−1
∫ x

0

[xA1]dxdx

y2 =
3x4

8

For n = 2,

A2 = y2N
′(y0) +

y21
2
N ′′(y0)

A2 = y2(3y
2
0 − 15y40) +

y21
2

(6y0 − 60y0) = −45

4
x4

y3 =

∫ x

0

x−1
∫ x

0

[xA2]dxdx

y3 = − 5

16
x6

For n = 3,

A3 = y3N
′(y0) +

1

2!
2y1y2N

′′(y0) +
y31
3!
N ′′′(y0)

A3 = y3(3y
2
0 − 15y40) + y1y2(6y0 − 60y30) +

y31
6

(6− 180y20) =
280

16
x6

y4 =

∫ x

0

x−1
∫ x

0

[xA3]dxdx

y4 =
35

128
x8

Then,

y = y0 +

∞∑
n=1

yn+1

y = 1 +

[
−x2

2
+

3x4

8
− 5x6

16
+

35

128
x8 − · · ·

]
y = 1 +

√
x

Example 4: Consider the nonlinear singular equation y′′+ 1
2x
y′ = ey(1

2
−ey) subject to bound-

ary conditions, y(0) = ln 2, y(1) = 0

Solution: Given, y′′ + 1
2x
y′ = ey(1

2
− ey), y0 = ln 2

The given equation is rewritten in the form,

(x
1
2y′)′ = x

1
2 ey(

1

2
− ey)

The recurrence relation is given by,
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yn+1 =

∫ x

o

x−
1
2

∫ x

0

[x
1
2An]dxdx

where the Adomian polynomial is given by ,

An =
1

n!

[
dn

dλn
N

(
n∑
i=0

λiyi

)]

For n = 0,

A0 = N(y0) = ey0(
1

2
− ey0) = (−3)

y1 =

∫ x

0

x−
1
2

∫ x

0

[x
1
2A0]dxdx

y1 =

∫ x

0

x−
1
2

∫ x

0

x
1
2 (−3)dxdx = −x2

For n = 1,

A1 = y1N
′(y0) = y1

[
ey0(−ey0) + (

1

2
− ey0)ey0

]
= 7x2

y2 =

∫ x

0

x−
1
2

∫ x

0

[x
1
2A1]dxdx =

∫ x

0

x−
1
2

∫ x

0

x
1
2 (7x2)dxdx

y2 =
x4

2

For n = 2,

A2 = y2N
′(y0) +

y21
2
N ′′(y0)

A2 = y2

[
1

2
ey0(1− 4ey0)

]
+

1

2
y21

[
1

2
ey0(1− 8ey0)

]
= −11x4

y3 =

∫ x

0

x−
1
2

∫ x

0

[x
1
2A2]dxdx =

∫ x

0

x−
1
2

∫ x

0

x
1
2 (−11x4)dxdx

y3 = −x
6

3

For n = 3,

A3 = y3N
′(y0) +

1

2!
2y1y2N

′′(y0) +
y31
3!
N ′′′(y0)

A3 = y3

[
1

2
ey0(1− 4ey0)

]
+ y1y2

[
1

2
ey0(1− 8ey0)

]
+
y31
6

[
1

2
ey0(1− 16ey0)

]
= 15x6

y4 =

∫ x

0

x−
1
2

∫ x

0

[x
1
2A3]dxdx =

∫ x

0

x−
1
2

∫ x

0

x
1
2 (15x6)dxdx

y4 =
x8

4
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Then,

y = y0 +

∞∑
n=1

yn+1

y = ln 2 +

[
−x2 +

x4

2
− x6

3
+
x8

4
− · · ·

]

y = ln 2 +

∞∑
n=1

(−1)nx2n

n

y = ln 2− ln(1 + x2)

y = ln

(
2

1 + x2

)

6 Conclusion
In this paper the Adomian decomposition method yields the smaller root. The main advan-

tage of this method is that it can be applied directly for all types of equations. The convergence
is accurate locally and mainly in a neighborhood of the boundary points. An efficient approach
is proposed to solve efficiently and easily a class of nonlinear singular two-point boundary
value problems. The solving of nonlinear partial differential equations is to determine the ex-
act solutions. It is simple powerful tool for obtaining the solutions without a large size of
computations. It has a higher degree of accuracy.
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