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M.E.S. College of Arts, Commerce and Science, 15th cross, Malleswaram, Bengaluru-560003.

Email ID:1anargund1960@gmail.com, 2ashacsgowda@yahoo.co.in

Absract: Density stratification and gravity play important role in wave generation in non-
homogeneous fluid. Gravity waves in homogeneous fluid exist only when there is a free
surface, which is nothing but surface fluid discontinuity, i. e density stratification. Gravity
acts as restoring force if there exist density stratification, which in turn leads to oscillations.
For an incompressible fluid to be stable if the density of displaced fluid whose position is
lower than old is greater and unstable if it is lesser. Thus oscillation or wave motion is
possible only if the stratification is statically stable i.e density decreases with height. For
stability of compressible fluid entropy decreases with elevation and wave motion exists only
in stably stratified fluid. In this paper we have analyzed the effect of rotation and magnetic
field on linear and nonlinear internal gravity waves called Alfven inertial internal gravity
waves propagating in an exponentially stratified incompressible and infinitely conducting
fluid. The problem is governed by nine nonlinear inhomogeneous PDE’s which has been
reduced to third order ODE’s by using traveling wave solutions and some first integrals.
The resulting system is analysed in Phase-plane. We have solved the same system by Rank
matrix method. The Rank matrix gives us new solutions which are not obtained by Achala
[2001].

Keywords: Travelling wave, Rotating stratified fluid, Inhomogeneous systems, Phase func-
tion, Internal Gravity waves, Rank matrix method.

Subject Classification Code :

1 Introduction
Internal waves are waves which occur in the interior of a fluid where gravity is the restor-

ing force. The density differences in the interior of the fluid are tiny compared to those at the
surface which are present in the oceans and the atmosphere make it possible to have very large
internal waves with large currents hence they can transport material in the ocean or atmosphere
along with them. Inertial waves are a type of mechanical wave possible in rotating fluids com-
monly seen at the beach or in the bathtub. Inertial waves flow through the interior of the fluid,
not at the surface and restoring force for inertial waves is the Coriolis force Most commonly
they are observed in atmospheres, oceans, lakes, and laboratory experiments. Rossby waves,
geostrophic currents, and geostrophic winds are examples of inertial waves. Inertial waves are
also likely to exist in the molten core of the rotating Earth [1]. The linear theory of inertial
waves is known well [2, 3] while the influence of nonlinear effects of wave interactions are
subject of many recent theoretical and experimental studies.
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Waves in electrically conducting fluids occurring as a result of the stability imparted by
magnetic fields is known as hydromagnetic or Alfven waves [4]. They are found in plasmas
or fluids with high electrical conductivity, such as the solar corona and Earth’s magnetosphere
and core. It is therefore a matter of considerable geophysical and astrophysical importance to
understand and be able to quantitatively model such waves and their generalizations that occur
when both magnetic fields and rotation are present.

The basic mechanism underlying waves in electrically conducting fluids permeated by mag-
netic fields was elucidated by Alfven [5]. He described a scenario whereby magnetic tension
and inertial effects give rise to oscillations and travelling waves, which are known as Alfven
waves in his honour. Lehnert [6] deduced that rapid rotation of a hydromagnetic system would
lead to the splitting of plane Alfven waves into two circularly polarized, transverse, waves.
He realized these would have very different timescales if the frequency of Inertial waves was
much larger than that of pure Alfvén waves in the system. Here, such waves will be collec-
tively be referred to as Magnetic Coriolis (MC) waves. Chandrasekhar [7] studied the effects
of buoyancy on rotating hydromagnetic systems, though he focused primarily on axisymmet-
ric motions. Braginsky [9, 10] described the influence of density stratification and convection
driving non-axisymmetric waves naming these Magnetic Archimedes Coriolis (MAC) waves.

A more focused technical reviews of the subject are given by Roberts and Soward [11],
Acheson and Hide [12, 13], Eltayeb [14, 15], Fearn Roberts and Soward [14], Proctor [17],
Zhang and Schubert [18], Soward and Dormy [19]. Moffatt’s monograph [20] is best material
for essential reading.

Traveling wave solutions of inhomogeneous systems as quasi-simple waves has been stud-
ied extensively by many authors (see Courant and Friedrichs [21], Schindler [22]). The concept
of simple integral elements in this context was introduced by Grundland [23] with a view to
studying the properties of solutions which depend on the nature of the inhomogeneity. Exten-
sive work in this regard has been carried out by many authors both for linear and nonlinear
theory. Linear work is carried out by Bretherton [24], Booker and Bretherton [25], Jones [26],
Acheson [27, 28, 29, 30], Grimshaw [31], Rudraiah and Venkatachalappa [32, 33, 34] and oth-
ers.

Nonlinear theory was carried out by Seshadri and Sachdev [35] for acoustic gravity waves
in compressible isothermal atmosphere, Venkatachalappa, Rudraiah and Sachdev [36], Rudra-
iah, Sachdev and Venkatachalappa [37] for rotating compressible stratified fluid, Venkatacha-
lappa, Achala and Sachdev [38] for incompressible, rotating, stratified flows as limiting case
of [36, 37]. Rudraiah and Venkatachalappa (1979) have studied the internal Alfven – iner-
tial gravity waves with basic flow in different from zero subject to infinitesimal perturbations
and obtained solutions near critical levels. Later Venkatachalappa, Rudraiah and Sachdev[36]
have studied the propagation of linear and nonlinear traveling waves in a compressible rotat-
ing atmosphere. Venkatachalappa, Achala and Sachdev [38] have investigated the propagation
of linear and nonlinear traveling waves in an exponentially stratified incompressible rotating
fluid. Venkatachalappa, Rudraiah and Sachdev [37] have studied the propagation of linear and
nonlinear hydro magnetic waves in an exponentially stratified incompressible medium. In this
chapter we analyze the effect of rotation and magnetic field on linear and nonlinear internal
gravity waves called Alfven inertial internal gravity waves propagating in an exponentially
stratified incompressible and infinitely conducting fluid. The waves under study are governed
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by a system of nine nonlinear inhomogeneous PDEs. We seek travelling wave solutions of this
system.

2 Basic Equations
The model considered is in Cartesian co-ordinate system with x− and y−axes in the hori-

zontal plane and z− axes along vertical direction. The study is on quasi simple internal gravity
waves in an incompressible, infinitely conducting stratified fluid rotating with uniform angular
velocity Ω about a vertical axis in the presence of an applied variable magnetic field H0(z) in
the x− direction. The equations governing unsteady system are:

ρ

[
D~q

Dt
+ 2~Ω× ~q

]
+∇P − ρ~g − µ( ~H.∇) ~H = 0 (1)

Dρ

Dt
= 0 (2)

∇.~q = 0 (3)

D ~H

Dt
−
(
~H.∇

)
~q = 0 (4)

∇. ~H = 0 (5)

where D
Dt

= ∂
∂t

+ u ∂
∂x

+ v ∂
∂y

+ w ∂
∂z
, P = p + µH2

2
is the total pressure, p the hydrodynamic

pressure, ~q with components (u, v, w) the fluid velocity, ρ the density, ~g the acceleration due
to gravity, ~Ω the angular velocity, ~H the magnetic field with components (Hx, Hy, Hz) in the
x, y, z directions respectively and µ is the permeability. We assume that the undisturbed fluid
has density ρ0 (z) and an applied magnetic field H0 (z) of the form,

ρ0 (z) = ρc exp
(
−z/ ~H

)
(6)

H0 (z) = Hc exp
(
−z/2 ~H

)
(7)

where ~H is the scale height, ρc and Hc are the reference density and magnetic field at z = 0.
From equation (1) we find hat the basic pressure ρ0 (z) is given by

p0 (z) = pc exp
(
−z/ ~H

)
(8)

where pc = g ~Hρc is the hydrodynamic balance. We non dimensionalise the equations (1) -

(5) using H,
(
g/ ~H

) 1
2
,
(
g ~H
) 1

2
, pce

(−z/ ~H), ρce
(−z/2 ~H) as the scales for length, time, velocity,

pressure, density and magnetic field respectively. We thus have

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
+w

∂u

∂z
−2Ωv+

1

ρ

∂P

∂x
−A

2

ρ

(
Hx

∂Hx

∂x
+Hy

∂Hx

∂y
+Hz

∂Hx

∂z
− HxHz

2

)
= 0

(9)
∂v

∂t
+u

∂v

∂x
+v

∂v

∂y
+w

∂v

∂z
+2Ωu+

1

ρ

∂P

∂y
− A

2

ρ

(
Hx

∂Hy

∂x
+Hy

∂Hy

∂y
+Hz

∂Hy

∂z
− HyHz

2

)
= 0

(10)
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∂w

∂t
+u

∂w

∂x
+v

∂w

∂y
+w

∂w

∂z
+

1

ρ

∂P

∂x
+

(
1− p

ρ

)
−A

2

ρ

(
Hx

∂Hz

∂x
+Hy

∂Hz

∂y
+Hz

∂Hz

∂z
− H2

z

2

)
= 0

(11)
∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
− ρw = 0 (12)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (13)

∂Hx

∂t
+

(
u
∂Hx

∂x
+ v

∂Hx

∂y
+ w

∂Hx

∂z

)
= 0 (14)

∂Hy

∂t
+

(
u
∂Hy

∂x
+ v

∂Hy

∂y
+ w

∂Hy

∂z

)
= 0 (15)

∂Hz

∂t
+

(
u
∂Hz

∂x
+ v

∂Hz

∂y
+ w

∂Hz

∂z

)
= 0 (16)

∂Hx

∂x
+
∂Hy

∂y
+
∂Hz

∂z
− Hz

2
= 0 (17)

whereA2 =
µH2

c

ρcgH
physically this represents non-dimensional Alfven velocity. We seek travel-

ling wave solutions of the (9) - (17) in the form u = u(φ), v = v(φ), w = w(φ), ρ = ρ(φ), P =
P (φ), Hx = Hx(φ), Hy = Hy(φ), Hz = Hz(φ)

φ =
x

λ1
+

y

λ2
+

z

λ3
− t (18)

where λ1, λ2, λ3 are arbitrary constants, that can be considered as wave length in x, y, z direc-
tions, the initial conditions are

u = v = w = Hy = Hz = 0, p = ρ = Hx = 1 (19)

Hence equations (9)-(17) now become

uφ + 2Ωv − Pφ
ρλ1

+
A2

2

[
B (Hx)φ −

HzHx

2

]
= 0 (20)

vφ + 2Ωu− Pφ
ρλ2

+
A2

2

[
B (Hy)φ −

HzHy

2

]
= 0 (21)

wφ −
Pφ
ρλ3

+
p

ρ
− 1 +

A2

2

[
B (Hz)φ −

H2
z

2

]
= 0 (22)

ρphi − ρw = 0 (23)

(Hx)φ +Buφ +
wHx

2
= 0 (24)

(Hy)φ +Bvφ +
wHy

2
= 0 (25)

(Hz)φ +Bwφ +
wHz

2
= 0 (26)

Bφ −
Hz

2
= 0 (27)

4
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where B =
Hx

λ1
+
Hy

λ2
+
Hz

λ3
, By suitably combining equations (20)-(27), we reduce this eighth

order system to third order system,

wφ =
−nλ3 (k − 1)− 2Ωξ

nλ3 (1− A2Q)
(28)

kφ = kw − (1− k)

nλ3
− 2Ωξ

n
(29)

ξφ =
2Ωw

λ3 (1− A2Q)
(30)

where
k =

p

ρ
, n =

1

λ21
+

1

λ22
, n =

1

λ21
+

1

λ22
+

1

λ23
(31)

the only singular point of the system (28)-(30) in (ξ, w, k) space is,

ξ = 0, k = 1, w = 0. (32)

The solution can analysed near these singular points by linearising the system.

3 Methodology: Rank Matrix Method

One useful application of calculating the rank of a matrix is the computation of the number
of solutions of a system of linear equations. According to the Roche-Capelli theorem, the sys-
tem is inconsistent if the rank of the augmented matrix is greater than the rank of the coefficient
matrix. If, on the other hand, ranks of these two matrices are equal, the system must have at
least one solution. The solution is unique if and only if the rank equals the number of vari-
ables. Otherwise the general solution has k free parameters where k is the difference between
the number of variables and the rank.

Let us think of a r × c matrix as a set of r row vectors, each having c elements; or let it
be a set of c column vectors, each having r elements. The rank of a matrix is defined as
the maximum number of linearly independent column vectors in the matrix or the maximum
number of linearly independent row vectors in the matrix. For a matrix of order r × c matrix,

1. If r < c, then the maximum rank of the matrix is r.

2. If r > c, then the maximum rank of the matrix is c.

3. The rank of a matrix would be zero only if the matrix had no elements. If a matrix had
even one element, its minimum rank would be one.

4. To find the rank of a matrix, we simply transform the matrix to its row echelon form and
count the number of non-zero rows.

The system (20) to (27) can be written in the following form:

Aij
dUj
dφ

= Bi (33)
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A =



1 0 0 − 1
ρλ1

0 A2B
2

0 0

0 1 0 − 1
ρλ2

0 0 A2B
2

0

0 0 1 − 1
ρλ3

0 0 0 A2B
2

0 0 0 0 1 0 0 0
B 0 0 0 0 1 0 0
0 B 0 0 0 0 1 0
0 0 B 0 0 0 0 1
0 0 0 0 0 1

λ1

1
λ2

1
λ3


U =



u
v
w
ρ
p
Hx

Hy

Hz


B =



A2

4
HxHz − 2Ωv

A2

4
HyHz + 2Ωu

A2

4
H2
z −

(
p
ρ
− 1
)

ρw
−wHx

2

−wHy
2

−wHz
2

Hz
2


(34)

This system is then studied both when the coefficient matrix of the left-hand side of the alge-
braic system is of maximum rank and when it is lowers than that. In the latter case Kronecker-
Capelli theorem leads to certain conditions on the unknown functions, which are, in fact, the
intermediate integrals. The system does not have any solutions if the rank of A is less than that
of [A,B]. Reducing the augmented matrix [A,B] to echelon form we obtain,

1 0 0 − 1
ρλ1

0 A2B
2

0 0
{
A2

4
HzHx − 2Ωv

0 1 0 − 1
ρλ2

0 0 A2B
2

0
{
A2

4
HzHy − 2Ωu

0 0 1 − 1
ρλ3

0 0 0 A2B
2

{
A2

4
H2
z +

(
1− p

ρ

)
0 0 0 − B

ρλ1
1 A2B2

2
− 1 0 0

{
A2

4
BH2

z + B
(
1− p

ρ

)
+ wHz

2

0 0 0 0 1 0 0 0
{
ρw

0 0 0 0 0 1
λ2

(
A2B2

2
− 1

)
1
λ3

(
A2B2

2
− 1

)
0


A2B
4λ1

H2
z + B

λ1

(
1− p

ρ

)
+ wHz

2λ1

−A
2B

4λ3
HzHx + 2ΩBv

λ3
+ wHx

2λ3

0 0 0 0 0 0 − 1
λ1λ3

(
A2B2

2
− 1

)
− 1
λ1λ2

(
A2B2

2
− 1

) 
A2B
4λ2

H2
z + B

λ2

(
1− p

ρ

)
+ wHz

2λ2

−A
2B

4λ3
HzHy − 2ΩBu

λ3
− wHy

2λ3

0 0 0 0 0 0 0 n

(
A2B2

2
− 1

) 
nm + nl + wHz

2
n− A2B

4λ2λ3
HzHy

− 2ΩBu
λ2λ3

− wHy
2λ2λ3

+ Hz
2λ3

(
A2B2

2
− 1

)
− A2B

4λ1λ3
HzHx + 2ΩBv

λ1λ3
+ wHx

2λ1λ3


(35)

where,

n =
1

λ21
+

1

λ22
(36)

n =
1

λ21
+

1

λ22
+

1

λ23
(37)

m =
A2B

4
H2
z (38)

l = B

(
1− p

ρ

)
(39)

We can observe that the conditions for matrix A and [A,B] to be of maximum rank equal to 8
are

A2B2

2
− 1 6= 0 or n 6= 0. (40)

Discussion of other conditions for full system is not so easy so now, let us
discuss for the case λ3 → ∞
For rank to be 7 the conditions are:

A2B2

2
− 1 = 0 and m+ l +

wHz

2
= 0 or n = 0 (41)

6



or
A2B2

2
− 1 = 0 and (Hz)φ = 0 (42)

or
A2B2

2
− 1 = 0 and (Hz)φ = 0,m+ l +

wHz

2
= 0 or n = 0 (43)

Case (i):
A2B2

2
− 1 6= 0

Using this condition and solving (28) for the derivatives Uj,φ, we get the solution which exactly
matches with that obtained by Achala (Thesis 2001).
For rank to be seven, we have the following cases,

Case (ii):
A2B2

2
− 1 = 0 and nt+ nt+

wHz

2
n = 0

Solving the system (20) to (27) using the above condition we get

B =

√
2

A
;w =

A√
2
Hz. (44)

These are very important new solutions in real plane.

Case (iii):
A2B2

2
− 1 = 0 and (Hz)φ = 0. Solving the system (4.20) to (4.27) using the above

condition we get
Hx

λ1
+
Hx

λ2
= C1 (45)

where C1 is a constant.

Case (iv):
A2B2

2
− 1 = 0 and (Hz)φ = 0, nm+ nl +

wHz

2
n = 0

Using the above condition, system (4.20) to (4.27) reduces to

w =
A√
2
Hz (46)

The solutions obtained in case (ii) and case(iv) are same. These are new solutions and are not
reported by any previous researchers. Thus we observe that the rank matrix gives all possible
analytic solutions.

4 Inference

In this paper we obtain new analytic solutions to non-linear internal gravity waves called
Alfven inertial internal gravity waves propagating in an exponentially stratified incompressible
and infinitely conducting fluid by Rank matrix method. It is a very powerful method which

7
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gives all possible existing analytic solutions. We have obtained new conditional solutions of
the problem which are given in equation (44) to (46).
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Absract: This article analyses thepresent educational status of women in Karnataka with
an approach towards inclusive growth. It is found that improvement in female literacy rates
are higher than their male counterparts and the female literacy rates in rural areas and
among SCs and STs needs to be enhanced.The GPI across literacy rates and GER have
increased considerably indicating decline in gender disparities across the levels of edu-
cation.The challenge before the state is to increase the GER to 30 per cent across higher
education as specified by Planning Commission. The enhancement of female retention
rates across 10th and 12th grade in the state is remarkable and females have scored com-
paratively higher to that of males across 10th and 12th grade, but there is decline in the
passing percentages across 12th grade across the respective period.

Keywords: Gender Parity Index (GPI), Gross Enrolment Ratio (GER), Retention Rate and
Inclusive Growth.

1 Introduction

Education is one of the critical inputs which lays firm foundation for knowledge base of the
society. It is necessary for enhancing and improving the human capital of any region. Theodore
Schultz rightly remarks that investing in education will help in building up the human capital
formation and formally organized education at the elementary, secondary and higher levels as
one of the ways of developing human resources.Notable economist Lawrence Summers regards
that investment in the education of girls may well be the highest return investment available in
the developing world.

The Five-year plans especially 11th and 12th of Planning Commission of Government of
India had encompassed the efforts to eliminate educational disparities for enhancing access,
equity and quality at all stages of educational system in order to achieve faster inclusive growth.
Similarly, World Bank Group has also dedicated its efforts for promoting girl’s education and to
improve gender equality. It is indicated very well in WBG’s Gender Strategy 2016-2023: Gen-
der Equality, Poverty Reduction and Inclusive Growth and Education Strategy 2020: Learning
for All. According to 2011 Census, female population comprises of 49.3 per cent to the total
in Karnataka state, but still they are behind their male counterparts in terms of education. Kar-
nataka state has implemented noteworthy reforms in education sector in order to ensure access,
equity and quality at all levels of education. Therefore, the objective of augmenting educational
equalities with gender approach becomes crucial in the perspective of inclusive growth.
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2 Literature Review and Objective
McDougall (2000) assessed the correlation between higher female literacy rate and lower

gender gap in it but is still subject to deep regional variations. Biswal (2011) found out that
regional, gender and social disparities in access and participation is a major concern even af-
ter visible progress in secondary education. Chanana (2011) critically analysed the policy
approach towards exclusion and inclusion of women in higher education. Naik and Sharada
(2013) found that districts of Karnataka state are marked with wide disparities in education even
though few districts have recorded remarkable progress in educational development. Hong et.al
(2019)examined the casual effect of reduction of inequality in gender education and enhancing
female education and suggested that the effective way of promoting inclusive growth will be
to expand women’s educational opportunities. Extensive research is undertaken in the context
of status of women’s education in line with socio-economic development and inclusive growth.
This article therefore tries to examine the present educational status of women in Karnataka
with an approach towards inclusive growth.

3 Results and Discussion
This article henceforth attempts to track the educational progress of women in the Kar-

nataka state by analyzing indicators namely literacy rates, share of enrolment and gross enrol-
ment ratio at different levels of education, drop-out rate, retention rate and passing percentages
across 10th and 12th grade.Literacy rate is one of the significant indicators for educational sta-
tus. Table 1 presents the trends of gender-wise literacy rates in Karnataka state with regard to
regions and social groups namely Scheduled Caste and Scheduled Tribes.

Table 1: Trends of Literacy rate in Karnataka (in per cent)

Particulars 2001 2011 Progress

Overall

Total 66.64 75.60 8.96
Male 76.10 82.47 6.37

Female 56.87 68.08 11.21
GPI* 0.75 0.83 0.08

Rural

Total 59.33 68.86 9.53
Male 70.45 77.61 7.16

Female 48.01 59.71 11.70
GPI 0.68 0.77 0.09

Urban

Total 80.58 86.21 5.63
Male 86.66 90.04 3.38

Female 74.12 81.36 7.24
GPI 0.86 0.90 0.05

Scheduled Caste

Total 52.87 65.33 12.46
Male 63.75 74.03 10.28

Female 41.72 56.58 14.86
GPI 0.65 0.76 0.11

Scheduled Tribe

Total 48.27 62.08 13.81
Male 59.66 71.14 11.48

Female 36.57 52.98 16.41
GPI 0.61 0.74 0.13
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Note: *stands for Gender Parity Index

Source: Extracted from Primary Census Abstract, Census Documents, GOI

It reveals that the overall literacy rate in the state has been enhanced by 8.96 points in 2011
over 2001. Gender-wise picture indicates that the male literacy rate is higher when compared
to female literacy rate in both 2001 and 2011, but the progress over this period is seen highest
across females. It increased by 11.21 points higher than the 6.37 points increase over male
literacy rate. The gender parity index in literacy rates in the state has improved and stood at
0.83 during 2011.

Across rural and urban areas of Karnataka state also, it is revealed that the progress of fe-
male literacy rate is higher when compared to male literacy rates. It is important to note that
the female literacy rates of rural areas in the state has not crossed 60 percent which becomes a
challenge for fostering inclusive growth in education sector. The gender parity index in terms
of literacy rates across rural areas also needs to be improved.

Further glance at Scheduled Caste and Scheduled Tribes reveals that the female literacy
rates of these groups in the state are lagging behind when seen in comparison to their male
counterparts. The progress of female literacy rates of Scheduled Tribes (16.41 points) is quite
higher when compared to that of Scheduled Caste (14.86 points) during 2011 in the state. But
the female literacy rates of these groups are still below 60 per cent. Therefore, there is urgency
to enhance the female literacy rates of these groups for bettering the gender parity index of their
literacy rates which is below 0.80.

Elementary education in Karnataka state covers the age group of 5 to 14 years, whereas
secondary education comprises of 14 to 18 years and higher education includes above 18 years
up to 24 years.During the period 2000-01 to 2019-20, the female enrolment across elementary
education in the state progressed with an average annual growth rate of -0.4per cent whereas
across secondary education growth rate of 1.4 per cent is noted. Noteworthy increase is no-
ticed with regard to female enrolment across higher education registering average growth rate
of around 10.3 per cent. The share of female enrolment to the total enrolment across differ-
ent levels of education is quite promising when compared to its male counterparts (See Table
2). It reveals that the share of male enrolment to the total at elementary, secondary and higher
education has recorded decline with 0.6 points, 5.4 points and 10.4 points respectively. On
the contrary to it, the share of female enrolment to the total enrolment in the state have reg-
istered increase during the respective periods.The average share of female enrolment stood at
48.1 per cent across elementary education and 47.1 per cent across secondary education during
the period 2000-01 to 2019-20. Whereas the average share of female enrolment across higher
education was around 44.6 per cent during the period 2000-01 to 2018-19.

Table 2: Gender-wise share of enrolment in Karnataka (in per cent)

Years
Elementary Secondary Higher

Education (EE) Education (SE) Education (HE)
Male Female Male Female Male Female

2000-01 52.4 47.6 57.5 42.5 60.4 39.6
2001-02 52.3 47.7 54.9 45.1 60.1 39.9
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2002-03 51.9 48.1 55.1 44.9 60.4 39.6
2003-04 51.9 48.1 53.6 46.4 58.8 41.2
2004-05 52.0 48.0 53.2 46.8 55.7 44.3
2005-06 51.7 48.3 55.9 44.1 59.4 40.6
2006-07 51.8 48.2 52.9 47.1 59.7 40.3
2007-08 51.7 48.3 52.1 47.9 57.5 42.5
2008-09 51.7 48.3 52.1 47.9 56.4 43.6
2009-10 51.7 48.3 51.3 48.7 56.6 43.4
2010-11 51.8 48.2 51.3 48.7 53.8 46.2
2011-12 51.8 48.2 51.2 48.8 54.1 45.9
2012-13 51.9 48.1 50.9 49.1 53.0 47.0
2013-14 51.7 48.3 51.8 48.2 52.5 47.5
2014-15 51.6 48.4 52.1 47.9 52.0 48.0
2015-16 51.6 48.4 52.1 47.9 51.6 48.4
2016-17 52.0 48.0 52.4 47.6 51.0 49.0
2017-18 51.9 48.1 52.1 47.9 50.0 50.0
2018-19 51.9 48.1 52.0 48.0 50.0 50.0
2019-20 51.8 48.2 52.1 47.9 - -

Note: - Enrolment data not available
Source: Author’s Calculations derived from Statistics of School Education, Statistics on

Higher and Technical Education, Statistical Abstract of Karnataka and Economic Survey of
Karnataka

Gender Parity Index (GPI) is calculated to understand the level of disparities between male
and female across different educational indicators in the context of inclusive growth. GPI across
enrolment at elementary, secondary and higher education is provided in Chart 1. It indicates
that during the year 2000-01, the disparities across secondary and higher education were high,
but less across elementary education. This is evident from GPI values which stood at 0.91
across elementary, 0.74 across secondary and 0.66 across higher education. Gradually over the
period, the disparities have been reduced as we can notice increase in the GPI values. Further
during 2018-19, the GPI value across elementary, secondary and higher education in the state
have enhanced by 0.02 points, 0.18 points and 0.35 points respectively over the period 2000-01.
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Chart 1: Gender Parity Index (GPI) of education enrolment in Karnataka

Gross Enrolment Ratio (GER) is one of the suitable indicators to assess the extent of par-
ticipation and access at different levels of education. It is the ratio of the number of persons
enrolled (inclusive of over-aged and under-aged persons if any) to the total number of persons
in the corresponding age-group. It is evident from Table 3 that from 2005-06 to 2018-19, there
is high degree of participation and the increase in female GER across different levels of educa-
tion is higher when compared to male GER. It is commendable in the light of inclusive growth
in the state. With increase by 5.35 points across elementary education and 59.87-point increase
across secondary education, the female GER in the state has crossed 100 per cent.

Table 3: Gross Enrolment Ratio (GER) in Karnataka

Years
Elementary Secondary Higher

Education (EE) Education (SE) Education (HE)
Male Female Male Female Male Female

2005-06 99.11 96.58 46.34 43.96 15.76 11.73
2010-11 100.20 98.30 57.90 57.80 26.55 24.34
2015-16 98.96 99.83 82.35 84.19 26.30 25.90
2018-19 102.32 101.93 105.68 103.83 28.20 29.40

Source: Reports of Karnataka School Education and MHRD reports titled “Statistics on
School Education”, “Statistics on Higher and Technical Education”

It seems that access across elementary and secondary education is not an issue, but the
challenge before the state is to increase the GER across higher education. No doubt that, there
in increase in the GER but neither the male GER nor the female GER across higher education
have crossed 30 per cent in the state. This is the issue which needs to be addressed by the policy
makers for fulfilling the Planning Commission target of 30 per cent GER to be achieved by
2020. The disparities in context of GER have seen reduction as it is evident from the increasing
GPI values at all levels of education. It has increased by 0.03 points across elementary and
secondary whereas by 0.30 points across higher education in the state (See Chart 2).

Chart 2: Gender Parity Index (GPI) of GER in Karnataka

Source: Author’s calculations based on Table 3

Table 4 provides the contrary picture of gender-wise GER across the levels of education
using the census data when compared to data published in the reports of Ministry of Human

15



MES Bulletin of Applied Sciences Volume 3, Issue 3, 2020

Development Resource. As per 2011 Census figures, the GER across females pursuing ele-
mentary education stood at 76.18 per cent which is slightly lower to its male counterparts in the
state. Still 23.82 per cent of females are left-out in this context. There is noteworthy increase in
female GER across secondary education by 40.06 points during 2011 over 2001, but still 21.07
per cent are left-outs. The female GER pertaining to higher education has increased by 15.48
points in 2011 over 2001, but still it has not crossed 25 per cent. The major challenge before
the state lies with regard to enhancement of GER across higher education in the state.

Table 4: Gross Enrolment Ratio of females in Karnataka based on Census data

Years
Elementary Secondary Higher

Education (EE) Education (SE) Education (HE)
Male Female Male Female Male Female

2001 80.24 76.49 42.09 38.87 10.97 7.89
2011 77.27 76.18 74.90 78.93 26.12 23.37

Progress -2.97 -0.31 32.81 40.06 15.15 15.48

Note: GER is calculated by dividing the enrolment at respective levels of education to that of
population in the corresponding age groups

Source: Author’s Calculations derived from Census documents

In the context of census data, the disparities in GER have considerably reduced across ele-
mentary and secondary education as the GPI value in 2011 stood at 0.99 and 1.05 respectively.
Disparities in GER across higher education needs to be addressed by the policy makers as the
GPI value of GER in 2011 stood at 0.89. (See Chart 3)

Chart 3: Gender Parity Index (GPI) of GER in Karnataka based on Census data

Source: Author’s calculations based on Table 4

Drop-out rate is one of the serious challenges to be addressed in the context of inclusive growth
and retention rate helps to determine the extent of inclusion in education. The Karnataka state
has shown remarkable progress in terms of reducing drop-out rate and enhancing retention rate
which are conversely related to each other.

Across elementary education, the state is successful in reducing its female drop-out rates
by 40.8 points in 2018-19 over 2000-01, which is comparatively higher to that of 36.9 points
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reduction across males. The similar trend is witnessed with regard to reduction of drop-out rates
across secondary education wherein 26.1-point reduction in female drop-out rates is noticed
which is higher when compared to 23.9 points decline among male drop-out rates. (See Table
5) Therefore, the state can strive through its policies towards reaching 100 per cent retention
rate and zero drop-out rates across both elementary and secondary education. This is quite
crucial in fostering inclusive growth in education.

Table 5: Drop-out rates and Retention rates in Karnataka (in per cent)

Years
Drop-out rate Retention rate

Male Female Male Female
Elementary Education

2000-01 49.0 53.5 51.0 46.5
2018-19 12.2 12.7 87.9 87.3

Secondary Education
2000-01 33.7 34.0 66.3 66.0
2018-19 9.8 7.9 90.2 92.1

Source: Report on men and women in Karnataka 2010-11 and Karnataka State Education
Report 2018-19

Passing percentages can be one of the indicators to enhance the transition rates and signifies
access to upper levels of education. Gender-wise passing percentages across 10th grade and
12th grade is depicted in Table 6.

It reveals that the females have scored higher when compared to their male counterparts
across both 10th and 12th grades in Karnataka. Even in terms of increase in the passing per-
centages across 10th grade over the years in the state, higher increase of 6.30 points is noticed
among females as compared to 2.49 points increase among males during the period 2005-06
to 2020-21. On the contrary, the passing percentages across 12th grade have noticed decline
over the years, but the decline of passing percentages among females is comparatively lesser to
that of males. This poses question on the quality of education which is imparted and therefore
there is an urgency to improve the passing percentages for enhancing the quality of education.
Further it also ensures better enrolment across higher education.

Table 6: Passing Percentages in Karnataka (in per cent)

Years
10th Grade 12th Grade

Male Female Male Female
2005-06 68.71 73.66 58.53 70.23
2010-11 76.40 80.50 48.80 64.20
2015-16 77.98 86.34 64.00 77.70
2019-20 69.02 80.06 55.29 68.24
2020-21 71.20 79.96 54.73 68.73
Progress 2.49 6.30 -3.80 -1.50

Source: Source: MHRD Report titled “Results of Secondary and Higher Secondary
Examinations”, KSEEB report titled “Analytical Statistics of SSLC results” and

examresults.net
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4 Conclusion

The findings of this study revealed that the Karnataka state has made gradual development
in the context of eliminating gender disparities across elementary, secondary and higher edu-
cation as evident from the Gender-Parity Index analysis. The cause of concerns in the light of
inclusive growth are to enhance the female literacy rates of rural areas, SCs and STs, to boost
the female Gross enrolment rate at higher education and to increase the passing percentages
across 10th and 12th grade in the state.

The policy makers of the state should continue the specific enrolment drive campaigns
at elementary level such as pre-matric and post-matric scholarships, Akshara Dasoha, Ksheera
Bhagya, Nali-Kali, Keli-Kali, Chinnara Angala, distribution of free textbooks, uniforms, school
bags etc so as to sustain the retention rates and to fulfill the goal of universalization of ele-
mentary education under Right to Education Act. Similarly other initiatives such as Capacity
building programmes, Dhaklathi Andholana, fee exemption for girl students studying in Gov-
ernment PU colleges, free laptop scheme for 12th pass students, NAAC Accreditation, Career
counseling under United Nations Development Programme named DISHA, etc will go long
way in enhancing participation across secondary and higher education and to improve the qual-
ity of education in the state. It will support to upgrade their employability skills which further
leads to securing of their livelihoods.
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Absract: The survey of Jacobi’s sum of squares and calculation of the number of repre-
sentations of a given positive integer into sum of two squares based on divisor function is
studied. Calculating manually, the number of representations, may although seem to be
interesting at the beginning for smaller numbers, but later on becomes a tedious job for
larger numbers. Fortunately we have formulae for sum of squares given by Jacobi, which
directly gives us the number of representations. This paper consists the proof of theorem
given by M. D. Hirschhorn [1] and another proof using Ramanujan’s 1ψ1 summation for-
mula [2]. A MATLAB program for the calculation of the same is written.
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1 Introduction

In 1640 Fermat stated that a prime p is the sum of two squares if and only if p ≡ 1 (mod 4)
and this was eventually proved by Euler in 1747. In 1801 Guass showed that the number n
is the sum of two square if and only if the squarefree part of n has no divisor congruent to
-1 modulo 4. In 1829 Jacobi proved that the number of representations of n as a sum of two
square is 4 times the difference between the number of divisors of n congruent to 1 modulo 4
and the number of divisors of n congruent to 3 modulo 4 [1].

Definition:

For positive integers n and k, let rk(n) denote the representations of n as a sum of k squares,
where representations with different orders and different signs are counted as distinct. By con-
vention, rk(0) = 1 [5].

Examples:

r2(2) = 4 , because 2 = 1212 = 12 + (−1)2 = (−1)2 + (1)2 = (−1)2 + (−1)2;
r2(9) = 4 , because 9 = (3)2 + (0)2 = (0)2 + (3)2 = (−3)2 + (0)2 = (0)2 + (−3)2;
r2(7) = 0 , because there are no ways we can write 7 as a sum of two squares.

Theorem 1.1. For each positive integer n,

r2(n) = 4
∑
d|n

d odd

(−1)

d− 1

2 . (1)
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We can state this theorem in the alternative formulation as,

r2(n) = 4(d1,4(n)− d3,4(n)) (2)

where dj,k(n) denotes the number of positive divisors d of n such that d ≡ j (mod k). Imme-
diately deducible from (2) is the well known theorem that every prime p congruent to 1 modulo
4 can be represented as sum of two squares [6].

Proof. Let us consider the Jacobian triple product identity ∀ z 6= 0, |q| < 1

∞∑
n=−∞

znqn
2

= (−zq; q2)∞(−q/z; q2)∞(q2; q2)∞, (3)

putting z = −z2q, q2 = q in equation (3)

(z2q; q)∞(z−2; q)∞(q; q)∞ =
∞∑

n=−∞

(−1)nz2nq

n2 + n

2 , (4)

where (z−2; q)∞ = (1− z−2)(z−2q; q)∞, then equation (4) can be rewritten as,

(z2q; q)∞(1− z−2)(z−2q; q)∞(q; q)∞ =
∞∑

n=−∞

(−1)nz2nq

n2 + n

2 , (5)

By multiplying both sides of equation (5) by z we get,

(z − 1/z)(z2q; q)∞(z−2q; q)∞(q; q)∞ =
∞∑

n=−∞

(−1)nz2n+1q

n2 + n

2 . (6)

From R.H.S. of equation (6) we have,

∞∑
n=−∞

(−1)nz2n+1q

n2 + n

2 =

(
∞∑

n=−∞
n even

+
∞∑

n=−∞
n odd

)
(−1)nz2n+1q

n2 + n

2 . (7)

Replacing n = 2n and n = 2n− 1 in R.H.S. of equation (7) we get,

R.H.S. =
∞∑

n=−∞

z4n+1q2n
2+n −

∞∑
n=−∞

z4n−1q2n
2−n

= z(−z4q3; q4)∞(−z−4q; q4)∞(q4; q4)∞

− 1/z(−z4q; q4)∞(−z−4q3; q4)∞(q4; q4)∞. (8)

where we applied the equation (3) two additional times.

We next use logarithmic differentiation to differentiate both sides of the equation (6) with re-
spect to z and set z = 1. (Note that on the far left side of (6) the differentiation of the infinite
products is unnecessary, because when z = 1, the factor z − 1/z = 0).
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Now consider the R.H.S. of equation (6) which is further simplified as equation (8),

R.H.S. =z(−z4q3; q4)∞(−z−4q; q4)∞(q4; q4)∞

− 1/z(−z4q; q4)∞(−z−4q3; q4)∞(q4; q4)∞

=u− v
d

dz

(
R.H.S.

)
=
du

dz
− dv

dz
(9)

Let,

u = z(−z4q3; q4)∞(−z−4q; q4)∞(q4; q4)∞

log u = log
[
z(−z4q3; q4)∞(−z−4q; q4)∞(q4; q4)∞

]
1

u

du

dz
=

1

z
+

[
1

1 + z4q3
(4z3q3) +

1

1 + z4q7
(4z3q7) + ...

]

+

[
1

1 + z−4q
(−4z−5q) +

1

1 + z−4q5
(−4z−5q5) + ...

]

= 1 +
∞∑
n=1

4q4n−1

1 + q4n−1
−
∞∑
n=1

4q4n−3

1 + q4n−3

du

dz
= (−q3; q4)∞(−q;−q4)∞(q4; q4)∞ ×

{
1 +

∞∑
n=1

4q4n−1

1 + q4n−1
−
∞∑
n=1

4q4n−3

1 + q4n−3

}
(10)

Now take the second term,

v =
1

z
(−z4q; q4)∞(−z−4q3; q4)∞(q4; q4)∞

log v = log
[1

z
(−z4q; q4)∞(−z−4q3; q4)∞(q4; q4)∞

]
1

v

dv

dz
=
(
z.
−1

z2

)
+

[
1

1 + z4q
(4z3q) +

1

1 + z4q5
(4z3q5) + ...

]

+

[
1

1 + z−4q3
(−4z−5q3) +

1

1 + z−4q7
(−4z−5q7) + ...

]

= −1 +
∞∑
n=1

4q4n−3

1 + q4n−3
−
∞∑
n=1

4q4n−1

1 + q4n−1

dv

dz
= (−q; q4)∞(−q3;−q4)∞(q4; q4)∞ ×

{
− 1 +

∞∑
n=1

4q4n−3

1 + q4n−3
−
∞∑
n=1

4q4n−1

1 + q4n−1

}
(11)

Substituting both equations (10) and (11) in equation (9) we obtain,

d

dz

(
R.H.S.

)
= (−q3; q4)∞(−q;−q4)∞(q4; q4)∞ ×

{
1 +

∞∑
n=1

4q4n−1

1 + q4n−1
−
∞∑
n=1

4q4n−3

1 + q4n−3

}

+ (−q; q4)∞(−q3;−q4)∞(q4; q4)∞ ×

{
1−

∞∑
n=1

4q4n−3

1 + q4n−3
+
∞∑
n=1

4q4n−1

1 + q4n−1

}
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= (−q3; q4)∞(−q;−q4)∞(q4; q4)∞ ×

{
2 + 2

∞∑
n=1

4q4n−1

1 + q4n−1
− 2

∞∑
n=1

4q4n−3

1 + q4n−3

}
d

dz

(
R.H.S.

)
= 2(−q3; q4)∞(−q;−q4)∞(q4; q4)∞ ×

{
1− 4

∞∑
n=1

(
q4n−3

1 + q4n−3
− q4n−1

1 + q4n−1

)}
(12)

Similarly taking logarithmic differentiation on L.H.S. of equation (6) we get,

d

dz

(
L.H.S.

)
= 2(q; q)3∞ (13)

Substituting equations (12) and (13) in equation (6) we get,

2(q; q)∞ = 2(−q3; q4)∞(−q;−q4)∞(q4; q4)∞ ×

{
1− 4

∞∑
n=1

(
q4n−3

1 + q4n−3
− q4n−1

1 + q4n−1

)}
(14)

Now divide equation (14) by 2 which results in,

(−q; q)2∞(q; q)∞ = (−q; q)∞(q2; q2)∞

= (−q; q2)∞(−q2; q2)∞(q2; q2)∞

= (−q; q2)∞(q4; q4)∞

= (−q3; q4)∞(−q; q4)∞(q4; q4)∞,

to deduce that,
(q; q)2∞

(−q; q)2∞
= 1− 4

∞∑
n=1

(
q4n−3

1 + q4n−3
− q4n−1

1 + q4n−1

)
(15)

By the special cases of Ramanujan’s theta function we have,

ϕ2(−q) =
(q; q)2∞

(−q; q)2∞
= (q; q2)4∞(q2; q2)2∞. (16)

Using equation (16) in equation (15) and replacing q by −q we conclude that,

ϕ2(q) = 1 + 4
∞∑
n=1

(
q4n−3

1− q4n−3
− q4n−1

1− q4n−1

)

= 1 + 4
∞∑
n=1

( ∑
d|n

d≡1 (mod 4)

1−
∑
d|n

d≡3 (mod 4)

1

)
qn (17)

By equating the coefficients of qn, n ≥ 1, on both sides of equation (17) we get,

r2(n) = 4(d1,4(n)− d3,4(n))

which is an alternate formulation of equation (2).
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2 Sum of two squares theorem using Ramanujan’s 1ψ1 Sum-
mation formula

Theorem 2.1. Using corollary of Ramanujan’s 1ψ1 summation formula i.e.,

1 +
∞∑
n=1

(1/α; q2)n(−αq)n

(βq2; q2)n
zn +

∞∑
n=1

(1/β; q2)n(−βq)n

(αq2; q2)n
zn

=
(q2; q2)∞(αβq2; q2)∞(−qz; q2)∞(−q/z; q2)∞

(αq2; q2)∞(βq2; q2)∞(−αqz; q2)∞(−βq/z; q2)∞
(18)

Proof. Substitute α = β = −1 and z = 1,

1 +
∞∑
n=1

(−1; q2)n(q)n

(−q2; q2)n
zn +

∞∑
n=1

(−1; q2)n(q)n

(−q2; q2)n
zn =

(q2; q2)∞(q2; q2)∞(−q; q2)∞(−q; q2)∞
(−q2; q2)∞(−q2; q2)∞(q; q2)∞(q; q2)∞

.

(19)
Now consider the R.H.S. of equation (19)

(q2; q2)∞(q2; q2)∞(−q; q2)∞(−q; q2)∞
(−q2; q2)∞(−q2; q2)∞(q; q2)∞(q; q2)∞

=
(q2; q2)2∞(−q; q2)2∞
(−q2; q2)2∞(q; q2)2∞

= (−q; q2)4∞(q2; q2)2∞

= ϕ2(q). (20)

By the Ramanujan’s θ function we have,

f(a, b) =
∞∑

n=−∞

a(n(n+1))/2b(n(n−1))/2

= (−a; ab)∞(−b; ab)∞(ab; ab)∞. (21)

Putting a = q and b = q in equation (21), we obtain

f(q; q) =
∞∑

n=−∞

qn
2

= (−q; q2)∞(−q; q2)∞(q2; q2)∞

= (−q; q2)2∞(q2; q2)∞

= ϕ(q),

Similarly we obtain
(−q; q2)4∞(q2; q2)2∞ = ϕ2(q).

Now consider L.H.S. of equation (19)

1 +
∞∑
n=1

(−1; q2)n(q)n

(−q2;−q2)n
+
∞∑
n=1

(−1; q2)n(q)n

(−q2;−q2)n
= 1 + 2

∞∑
n=1

(−1; q2)n(q)n

(−q2;−q2)n

= 1 + 2
∞∑
n=1

(1 + 1)(1 + q2)(1 + q4)....

(1 + q2)(1 + q4)(1 + q6)....(1 + q2n)
qn
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= 1 + 2× 2
∞∑
n=1

qn

1 + q2n
= 1 + 4

∞∑
n=1

qn

1 + q2n

(22)

From equations (20) and (22) we have,

1 + 4
∞∑
n=1

qn

1 + q2n
= (−q; q2)4∞(q2; q2)2∞ = ϕ2(q) (23)

On the other hand we have,

∞∑
n=1

qn

1 + q2n
=
∞∑
n=1

∞∑
m=0

(−1)mqn+2mn

=
∞∑
m=0

(−1)m
∞∑
n=1

q(2m+1)n

=
∞∑
m=0

(−1)m(q2m+1)

1− q2m+1
(24)

Substituting equation (24) in equation (23) we get,

1 + 4

(
∞∑
m=0

(−1)mq2m+1

1− q2m+1

)
= ϕ2(q). (25)

We see that we have arrived at the first equality of (17). The remainder of the proof then follows
as discussed in the previous theorem.

3 Examples

Using equation (2), for n = 1 and d = 1 we get

r2(1) = 4(1− 0) = 4 =⇒(1)2 + (0)2,

(−1)2 + (0)2,

(0)2 + (1)2,

(0)2 + (−1)2.

For n = 2, d = 1, 2

r2(2) = 4(1− 0) = 4 =⇒(1)2 + (1)2,

(−1)2 + (1)2,

(1)2 + (−1)2,

(−1)2 + (−1)2.

For n = 3, d = 1, 3

r2(3) = 4(1− 1) = 0.
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For n = 4, d = 1, 2, 4

r2(4) = 4(1− 0) = 4 =⇒(2)2 + (0)2,

(−2)2 + (0)2,

(0)2 + (2)2,

(0)2 + (−2)2.

For n = 5, d = 1, 5

r2(5) = 4(2− 0) = 8 =⇒(2)2 + (1)2,

(−2)2 + (1)2,

(2)2 + (−1)2,

(−2)2 + (−1)2,

(1)2 + (2)2,

(1)2 + (−2)2,

(−1)2 + (2)2,

(−1)2 + (−2)2.

For n = 6, d = 1, 2, 3, 6
r2(6) = 4(1− 1) = 0.

For n = 7, d = 1, 7
r2(7) = 4(1− 1) = 0.

For n = 8, d = 1, 2, 4, 8

r2(8) = 4(1− 0) = 4 =⇒(2)2 + (2)2,

(−2)2 + (2)2,

(2)2 + (−2)2,

(−2)2 + (−2)2.

For n = 9, d = 1, 3, 9

r2(9) = 4(2− 1) = 4 =⇒(3)2 + (0)2,

(−3)2 + (0)2,

(0)2 + (3)2,

(0)2 + (−3)2.

For n = 10, d = 1, 2, 5, 10

r2(10) = 4(2− 0) = 8 =⇒(3)2 + (1)2,

(−3)2 + (1)2,

(3)2 + (−1)2,

(−3)2 + (−1)2,

(1)2 + (3)2,

(1)2 + (−3)2,

(−1)2 + (3)2,

(−1)2 + (−3)2.
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4 MATLAB Program for Sums of Two Squares
For example n = 200 is considered.

n=200;
k=1:n;
d=k(rem(n,k)==0);
p=length(d);
z1=0;
for i=1:p
if mod(d(i),4)==1
z1=z1+1;
end
end
z2=0;
for i=1:p
if mod(d(i),4)==3
z2=z2+1;
end
end
z=4*(z1-z2)

Output:

d = 1 2 4 5 8 10 20 25 40 50 100 200
z = 12

5 Conclusion
Sums of squares is one of the interesting topics in the field of number theory. During the

survey, we came across identities and formulae for the number of representations of a given
positive integer into sums of two squares. Determination of this number is based on divisor
function. MATLAB program for the calculation of the same is written which gives us divisors
and number of representations of a given positive interger.
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Absract: A review has been done on an Onset of Benard - Marangoni ferroconvection
where the lower rigid surface and the upper horizontal free boundary is open to the at-
mosphere and are considered to be perfectly insulated to temperature perturbation by
considering the various factors such as presence of magnetic field viscosity, temperature
dependent viscosity, internal heat generation and the effect of coriolis force in a rotating
ferrofluid layer with Magnetic Field Dependent viscosity. The study reveals that presence
of the above parameter by considering the combined buoyancy and surface tension forces
stabilizes or destabilizes the system by considering the critical values of various parame-
ters that is to hasten the onset of ferroconvection.

Keywords: Ferrofluid, buoyancy , Surface tension , Coriolis force, Biot number, non lin-
earity of fluid magnetization , Magnetic number.

Subject Classification Code:

1 Introduction

Convection is known to be heat transfer method in fluid. Convection in a ferrofluid in the
presence of an external magnetic field is said to be ferroconvection. Ferrofluids are colloidal
liquids made of nano scale ferromagnetic or ferromagnetic particles suspended in a carrier fluid
(usually an organic solvent or water). Each tiny particle is thoroughly coated with a surfactant
to inhibit clumping. The ferrofluid is a type of functional fluid whose flow and energy transport
is controlled by external magnetic field due to its property it as variety of application in various
fields. Ferrofluid is used in rotary seals in computer hard drives and other rotating shaft motors.
Loudspeakers use ferrofluid to dampen vibrations. In medicine, ferrofluid is used as a contrast
agent for magnetic resonance imaging (MRI) and etc [1]. Ferrofluids usually do not retain
magnetization in the absence of an externally applied field. The magnetization of ferromagnetic
fluids depends on the magnetic field, temperature and the density of the fluid. Any variation
in these quantities can induce a change in body force distribution which leads to convection in
the presence of magnetic field gradient known as ferroconvection. Convection can be induced
if surface tension forces are the function of temperature. In accordance to that if the ferrofluid
layer has an upper surface open to atmosphere then the instability is due to the combined
effects of the buoyancy as well temperature dependent surface tension forces known as Benard
– Marangoni ferroconvection. The Benard – Marangoni convection problems of ferrofluid layer
heated from below under various assumptions is studied by many authors. Here we consider
the study done by Nanjundappa et al and I. S. Shivakumara on the onset of Benard – Marangoni
ferroconvection by considering the various factors such as magnetic field dependent viscosity
[2], internal heat generation [3], temperature dependent viscosity [4] and effect of coriolis force
in a rotating ferrofluid layer with magnetic field dependent viscosity [5].
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2 Formulation and Analysis

2.1 Benard ferroconvection with magnetic field dependent viscosity
The intent of the paper was to study coupled Benard– Marangoni ferroconvection by con-

sidering a Boussinesq ferrofluid layer of thickness d with no lateral boundaries and a uniform
vertical magnetic field H0 with magnetic field dependent viscosity. The lower boundary is
rigid with fixed temperature T0, while the upper non-deformable free boundary is subjected to
temperature T1, surface tension forces and a general thermal boundary condition on the pertur-
bation temperature is imposed. A Cartesian co-ordinate system (x, y, z) is used with the origin
at the lower boundary and the z-axis vertically upward. Gravity acts in the negative z-direction,
g = −gk̂, where k̂ is the unit vector in the z-direction. The surface tension σ is assumed to
vary linearly with temperature in the form,

σ = σ0 − σT (T − T0) (1)

Here σ0 is the unperturbed value and σT is the rate of change of surface tension with tempera-
ture. The fluid density ρ is assumed to vary linearly with temperature in the form ρ is,

ρ = ρ0[1− αt(T − T0)] (2)

where αt is the thermal expansion coefficient and ρ0 is the density at T = T0. In the study of
ferroconvection, we have to solve the Maxwell equations simultaneously with the balance of
mass, linear momentum and energy. Since the fluid is assume to be electrically not conducting,
the Maxwell equations reduce to,

5 · ~B = 0 (3)

5× ~H = 0 (4)

where ~B is the magnetic induction and ~H the intensity of magnetic field. In view of equation
(4) we can express the magnetic field by a scalar potential as,

~H = 5ϕ (5)

Further ~B, ~M and ~H are related by,
~B = µ0( ~M + ~H) (6)

where ~M is the magnetization and the µ0 magnetic permeability of vacuum. We assume that
the magnetization is aligned with the magnetic field, but allow dependence on the magnitude
of magnetic field as well as on the temperature in the form [6],

~M = [M0 + χ(H −H0)−K(T − T0)]

(
~H

H

)
(7)

where
M0 = M(H0, T0)

H = | ~H|
M = | ~M |

χ =

(
∂M

∂H

)
H0,T0

is the magnetic susceptibility
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K = −
(
∂M

∂T

)
H0,T0

is the pyromagnetic coeffecient

The momentum equation is given by

ρ0

[
∂~q

∂t
+ (~q · 5)~q

]
= −5 p+ ρ~g + µ0( ~M · 5) ~H + 25 ·[ηD] (8)

where ~q = (u, v, w) is the velocity, p the pressure, t the time and D = [5~q+ (5~q)T ]/2 the rate
of strain tensor. The fluid is assumed to be incompressible having variable viscosity. Exper-
imentally, it has been demonstrated that the magnetic viscosity has got exponential variation,
with respect to magnetic field [7]. As a first approximation, for small field variation, linear
variation of magnetic viscosity has been used in the form η = η0(1 + ~δ · ~B) where ~δ is the
variation coefficient of magnetic field dependent viscosity and is considered to be isotropic, η0
is taken as viscosity of the fluid when the applied magnetic field is absent [8].

Neglecting viscous dissipation, the energy equation is,ρ0CV ,H −µ0
~H ·

(
∂ ~M

∂T

)
V,H

 DT
Dt

+ µ0T

(
∂ ~M

∂T

)
V,H

D ~H

Dt
= Kt52 T (9)

where, CV ,H is the specific heat capacity at constant volume and magnetic field per unit mass,
and Kt the thermal conductivity.

The Continuity equation is,
5 ·~q = 0 (10)

We follow the stability analysis as outlined in the work of [6]. The basic state is quiescent and
is given by,

~q = 0

p = pb(Z)

Tb = T0 − βZ

~Hb =

[
H0 −

KβZ

(1 + χ)

]
k̂

~Mb =

[
M0 +

KβZ

(1 + χ)

]
k̂ where β = 4T/d

To study the stability of the system, we perturb all the variables in the form,

~q = ~q′

p = pb(z) + p′

η = ηb(z) + η′ (11)
T = Tb + T ′

~H = ~Hb(z) +H ′

~M = ~Mb(Z) +M ′

where, ~q, p′, η′, T ′, ~H and ~M are perturbed variables and are assumed to be small.
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By substituting equation (11) into equation (3) using equations (6) and (7) and assuming that
kβd << (1 + χ)H0 as propounded after dropping the primes we obtain [6],

Hx +Mx = (1 +M0/H0)Hx,

Hy +My = (1 +M0/H0)Hy, (12)
Hz +Mz = (1 + χ)Hz −KT

where (Hx, Hy, Hz) and (Mx,My,Mz) are (x, y, z) components of perturbed magnetic field
and magnetization, respectively.

Substituting equation (11) into equation (8) and linearizing. After neglecting the primes we
obtain in components,

ρ0
∂u

∂t
= −∂p

∂x
+ η0[1 + µ0δ(M0 +H0)52 u] + µ0(M0 +H0)

∂Hx

∂z
(13)

ρ0
∂v

∂t
= −∂p

∂y
+ η0[1 + µ0δ(M0 +H0)52 v] + µ0(M0 +H0)

∂Hy

∂z
(14)

ρ0
∂w

∂t
= −∂p

∂z
+ρ0αtgT+η0[1+µ0δ(M0+H0)52w]+µ0(M0+H0)

∂Hz

∂z
−µ0KβHz+

µ0K
2βT

1 + χ
(15)

Partially differentiating equation (13) and (14) with respect to x and y, respectively and by
adding them we obtain,

52
1 p = −ρ0αtqT

∂T

∂z
+ µ0(M0 +H0)

∂

∂z
(5 · ~H)− µ0Kβ

∂Hz

∂z
+
µ0K

2βT

1 + χ

∂T

∂z
(16)

where52
1 =

∂2

∂x2
+

∂2

∂y2
is the horizontal Laplacian operator.

Eliminating the pressure term from equation (15) using equation (16) we obtain,

ρ0
∂

∂t
−η0[1+µ0δ(M0+H0)52]52w = −ραtq52

1T+µ0Kβ
∂

∂z
(52

1ϕ)+
µ0K

2βT

1 + χ
(52

1T ) (17)

where52
1 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Substituting equation (11) into equation (9) and linearising. After neglecting primes we
obtain,

ρ0C0
∂T

∂t
− µ0KT0

∂

∂t

(
∂φ

∂z

)
= ρ0C0 −

(µ0K
2T0)

1 + χ
wβ +Kt52 T (18)

where ρ0C0 = ρ0CV ,H +µ0KH0

Finally equation (3), (4) after using (11) and (12) after neglecting primes yield,(
1 +

M0

H0

)
52

1 ϕ+ (1 + χ)
∂2φ

∂z2
−K∂T

∂z
= 0 (19)

Since the principle of exchange of stability is valid, we assume the normal mode solution in the
form,

(w, T, ϕ) = (w,Θ, φ)(z) expi(lx+my) (20)
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where l and m are wave numbers in the x and y directions respectively. Equation (20) in (17),
(18) and (19) and non- dimensionalizing the quantities in the form,

(x∗, y∗, z∗) =
(x
d
,
y

d
,
z

d

)
W ∗ =

d

v
W

t∗ =
v

d2
t

Θ∗ =
k

βνd
Θ

φ∗ =
(1 + χ)k

Kβνd2
φ

∴ We get,

(1 + Λ)(D2 − a2)W = (Ra+Rm)a2Θ− a2RmDφ (21)
(D2 − a2)Θ = −w (22)

(D2 − a2M3)φ−DΘ = 0 (23)

where

D =
d

dz
is the differential operator

a =
√
l2 +m2 is the overall horizontal wave number

Ra =
αtgβd

4

kν
is the thermal Rayleigh number

Rm = RaM1 =
µ0K

2β2d4

(1 + χ)kµ
the magnetic Rayleigh number

Λ = δµ0(M0 +H0) the non-dimensional magnetic feild dependent viscosity parameter

M1 =
µ0K

2β

(1 + χ)αtρ0g
the magnetic number

M3 =
(1 + M0

H0
)

(1 + χ)
the measure of non-linearity of magnetizatiopn parameter

M2 =
µ0T0K

2

ρ0C0(1 + χ)
the non-dimensional parameter and its value for different carrier liquids turns

out to be the order of 10neg6 and hence its effect is neglected as compared to unity

The above boundary equations are to be solved subject to appropriate boundary conditions. The
boundary considered are,

W = DW = Θ = Φ = 0 at z = 0 (24)

W = (1 + Λ)D2W +Maa
2Θ = DΘ +BiΘ +DΦ = 0 at z = 1 (25)

where Ma =
σT∆Td

µk
the Marangoni number and Bi =

hd

kt
is the Biot number. The case

Bi = 0 and Bi = ∞ respectively,correspond to constant heat flux and isothermal conditions
at the upper boundary. The above equations are solved by employing Rayleigh-Ritz technique
with chebyshev polynomials of second kind.
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2.2 Onset of Benard - Marangoni Ferroconvection with Internal Heat
Generation

The study reveals that by considering an electrically non - conducting Boussinesq ferrofluid
layer of thickness ‘d′ with a uniformly distributed volumetric heat generation. A uniform mag-
netic field H0 is applied in the direction normal to the boundaries of the ferrofluid layer. The
lower boundary is rigid with fixed temperature T0 while the upper non-deformable free bound-
aries are kept at Tl and Tu(< Tl) respectively . A Cartesian co-ordinate system (x, y, z) is
used with the origin at the lower boundary and the z−axis vertically upward. Gravity acts in
the negative z−direction,g = −gk̂ , where k̂ is the unit vector in the z-direction. The surface
tension σ is assumed to vary linearly with temperature in the form,

σ = σ0 − σT (T − T0) (26)

where σ0 is the unperturbed value and −σT is the rate of change of surface tension with tem-
perature T . The fluid density ρ is assumed to vary linearly with temperature in the form,

ρ = ρ0[1− αt(T − T0)] (27)

where αt is the thermal expansion coefficient and ρ0 is the density at T = T0. The governing
equations, in the Boussinesq approximation are [9],

5 · ~V = 0 (28)

ρ0

[
∂~V

∂t
+ (~V · 5)~V

]
= −5 p+ ρ~g + µ0( ~M · 5) ~H + µ52 ~V (29)

Kt52 T +Q =

ρ0CV,H − µ0
~H ·

(
∂ ~M

∂T

)
V,H

× DT

Dt
+ µ0T ·

(
∂ ~M

∂T

)
V,H

D ~H

Dt

(30)

5 · ~B = 0 (31)

5× ~H = 0 (32)
~B = µ0( ~M + ~H) (33)

where ~M is the magnetization and the µ0 magnetic permeability of vacuum. Following Fin-
layson, we assume that the magnetization is aligned with the magnetic field, but allow depen-
dence on the magnitude of magnetic field as well as on the temperature in the form,

~M = [M0 + χ(H −H0)−K(T − T0)]

(
~H

H

)
(34)

where,
M0 = M(H0, T0)

H = | ~H|
M = | ~M |

χ =

(
∂M

∂H

)
H0,T0

is the magnetic susceptibility
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K = −
(
∂M

∂T

)
H0,T0

is the pyromagnetic coeffecient

~q = (u, v, w) is the velocity vector

52 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
the laplacian operator

And t the time, p the pressure, ~H the magnetic field intensity, ~M is the magnetization, ~B is the
magnetic induction, CV ,H is the specific heat capacity at constant volume and magnetic field
per unit mass, Q is the uniformly distributed volumetric heat generation within ferrofluid layer.

To study the stability of the system, we perturb all the variables in the form,

~V = ~V ′, p = pb(z) + p′, T = Tb + T ′, ~Hb(z) +H ′, ~M = ~Mb(Z) +M ′ (35)

Solving the above equations and dropping the primes we get,

Hx +Mx = (1 +M0/H0)Hx

Hy +My = (1 +M0/H0)Hy (36)
Hz +Mz = (1 + χ)Hz −KT

where (Hx, Hy, Hz) and (Mx,My,Mz) are (x, y, z) components of perturbed magnetic field
and magnetization, respectively. By linearising, eliminating the pressure by operating the curl
twice and retaining the z- component of resulting equation we obtain,(

ρ0
∂

∂t
− µ52

)
52 W = −µ0K

(
−Qz
k1

+
Qd

2k1
− β

)
× ∂

∂t
(52

hϕ) + ρ0αtg52
h T

+
µ0K

2

1 + χ

(
−Qz
k1

+
Qd

2k1
− β

)
52
h T

(37)
∂T

∂t
− µ0T0K

∂

∂z

(
∂ϕ

∂z

)
= k152 T +

[
1− µ0T0K

2

1 + χ

]
×
(
−Qz
k1

+
Qd

2k1
− β

)
(38)(

1 +
M0

H0

)
52

1 ϕ+ (1 + χ)
∂2φ

∂z2
−K∂T

∂z
= 0 (39)

The normal mode expansion of the dependent variables is assumed to be of the form,

(w, T, ϕ) = (w,Θ, φ)(z) exp[i(lx+my)+αt] (40)

where l and m are wave numbers in the x and y directions respectively, and σ is the growth rate
which is complex. Thus by non-dimensionaling the quantities in the form,

(x∗, y∗, z∗) =
(x
d
,
y

d
,
z

d

)
W ∗ =

d

v
W

t∗ =
v

d2
t

Θ∗ =
k

βνd
Θ
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Φ∗ =
(1 + χ)k

Kβνd2
Φ

∴ We get,

[(D2 − a2)− σ](D2 − a2)W = −Rma
2[Ns(1− 2z)− 1]× (Dφ−Θ) +Rta

2Θ (41)

(D2 − a2 − Prσ)Θ− PrM2σφ = [Ns(1− 2z)− 1]× (1−M2)W (42)

(D2 −M3a
2)φ = DΘ (43)

where the above equations reduces to,

(D2 − a2)2W = −Rma
2[Ns(1− 2z)− 1]× (Dφ−Θ) +Rta

2Θ (44)

(D2 − a2)Θ = [Ns(1− 2z)− 1]W (45)

(D2 −M3a
2)φ = DΘ (46)

The above boundary equations are to be solved subject to appropriate boundary conditions. The
boundary considered are,

W = DW = Θ = Φ = 0 at z = 0 (47)

W = D2W +Maa
2Θ = DΘ +DΦ = 0 at z = 1 (48)

The above equations are solved by employing the Galerkin technique and regular perturbation
method and observed the values obtained by both methods complement each other.

2.3 Onset of Benard - Marangoni Ferroconvection with Temperature De-
pendent Viscosity

In the study we consider a horizontal ferrofluid layer of thickness ‘d′ with an uniform mag-
netic field H0 in the vertical direction . The lower boundary is rigid with fixed temperature
Tl, while the upper non - deformable free boundaries are kept at Tu(< Tl) respectively. A
Cartesian coordinate system (x, y, z) is used with the origin at the lower boundary and the z−
axis vertically upward [10]. The surface tension and density of a ferrofluid is considered to
be relatively high at a adjacent phase. the surface tension σ is assumed to vary linearly with
temperature in the form,

σ = σ0 − σT (T − T0) (49)

where σ0 is the unperturbed value and −σT is the rate of change of surface tension with tem-
perature T . whereas the viscosity η of the ferrofluid is assumed to vary exponentially with
temperature in the form,

η = η0 exp[−γ(T − Tr)] (50)

where η0 is the reference value at the reference temperature Tr and γ is a positive constant.

The relevant governing equations are,

5 · ~q = 0 (51)

ρ0

[
∂~q

∂t
+ (~q · 5)~q

]
= −5 p+5 · [η(5~q +5 ~qT )] + µ0( ~M · 5) ~H (52)
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Kt52 T =

ρ0CV ,H −µ0
~H ·

(
∂ ~M

∂T

)
V,H

 DT
Dt

+ µ0T

(
∂ ~M

∂T

)
V,H

· D
~H

Dt
(53)

5 · ~B = 0 (54)

5× ~H = 0 (55)
~B = µ0( ~M + ~H) (56)

~M = [M0 + χ(H −H0)−K(T − T0)]

(
~H

H

)
(57)

where,
M0 = M(H0, T0)

H = | ~H|
M = | ~M |

χ =

(
∂M

∂H

)
H0,T0

is the magnetic susceptibility

K = −
(
∂M

∂T

)
H0,T0

is the pyromagnetic coeffecient

~q = (u, v, w) is the velocity vector

52 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
the laplacian operator

and t denotes time, p the pressure, ~H the magnetic field intensity, ~M is the magnetization, ~B
is the magnetic induction, CV ,H is the specific heat capacity at constant volume and magnetic
field per unit mass.

To study the stability of the system, we perturb all the variables in the form,

~V = ~V ′, p = pb(z) + p′, T = Tb + T ′, ~Hb(z) +H ′, ~M = ~Mb(Z) +M ′, η = ηb(z) + η′ (58)

Then,

η = η0 exp

[
γβ

(
z − d

2

)
+ γ(Tr − Tα)− γT ′

]
(59)

Solving the above equations after dropping the primes we get,

Hx +Mx = (1 +M0/H0)Hx

Hy +My = (1 +M0/H0)Hy (60)
Hz +Mz = (1 + χ)Hz −KT

where (Hx, Hy, Hz) and (Mx,My,Mz) are (x, y, z) components of perturbed magnetic field
and magnetization, respectively. By eliminating the pressure term by operating the curl twice
and linearising we obtain,(

ρ0
∂

∂t

)
52 w = η(z)54 w + 2

∂η(z)

∂z
52

(
∂w

∂z

)
+
∂2η(z)

∂z2
× (52w − 252

h w)

+
µ0kβ

1 + χ

∂

∂z
(52

hT ) +
µ0k

2β

1 + χ

∂

∂z
(52

hT ) (61)
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ρ0C0
∂T

∂t
− µ0T0K

∂

∂t

(
∂ϕ

∂z

)
= kt52 T +

[
ρ0C0 −

µ0T0K
2

1 + χ

]
wβ (62)

After simplification the above equation reduces to,(
1 +

M0

H0

)
52
n ϕ+ (1 + χ)

∂2ϕ

∂z2
−K∂T

∂z
= 0 (63)

The normal mode expansion of the dependent variables is assumed to be of the form,

(w, T, ϕ) = (w,Θ, φ)(z) expi(lx+my) (64)

where l andm are wave numbers in the x and y directions respectively and Non-dimensionalizing
the above quantities we have,

(x∗, y∗, z∗) =
(x
d
,
y

d
,
z

d

)
W ∗ =

d

v
W

Θ∗ =
k

βνd
Θ

φ∗ =
(1 + χ)k

Kβνd2
φ

¯f(z) =
η(z)

η0

∴ We get,

f̄((D2 − a2)2)W + 2Df̄(D2 − a2)DW +D2f̄(D2 + a2)W = −Rma
2(Dφ−Θ) (65)

(D2 − a2)Θ = −(1−M2)W (66)
(D2 −M3a

2)φ = DΘ (67)

On simplification,

¯f(z) = exp

[
B

(
z − 1

2

)
+

(Tr − Tα)

βd

]
(68)

whereB = γβd is the dimensionless viscosity parameter . If the reference temperature Tr = Tα
then,

¯f(z) = exp

[
B

(
z − 1

2

)]
(69)

subjected to boundary condition

W = DW = Θ = Φ = 0 at z = 0 (70)

W = f̄D2W +Maa
2Θ = DΘ +DΦ = 0; at z = 1 (71)

The above equations are solved by employing the Galerkin technique and regular perturbation
method and observed the values obtained by both methods complement each other.

38



MES Bulletin of Applied Sciences Volume 3, Issue 3, 2020

2.4 Effect of Coriolis Force on Benard - Marangoni Convection in a Ro-
tating Ferrofluid Layer with MFD Viscosity

The intent of the paper was to study coupled Benard– Marangoni ferroconvection by con-
sidering a Boussinesq ferrofluid layer of thickness d permeated by uniform applied magnetic
field H0 acting in the vertical direction . Which is bounded below by rigid surface and above
by a non - deformable free surface. where the layer is rotating uniformly about its axis with an
angular velocity ~Ω = Ωk̂. A cartesian coordinate system (x, y, z) is used with the origin at the
lower boundary and the z− axis vertically upwards.The surface tension σ is assumed to vary
linearly with temperature in the form,

σ = σ0 − σT∆T (72)

where σ0 is the unperturbed value and −σT is the rate of change of surface tension with tem-
perature T .

A linear variation in the viscosity with respect to magnetic field is of the form [8],

η = η0(1 + ~δ · ~B) (73)

where η0 is the viscosity of the fluid in the absence of magnetic field and ~δ is the coefficient of
magnetic field dependent viscosity. The relevant governing equations are,

5 ·~V = 0 (74)

ρ0

[
∂~V

∂t
+ (~V · 5)~V

]
= −5P +ρ0[1−αt(T − T̄ )]~g+25·[ηD]+µ0( ~M ·5) ~H+2ρ0(~V ×~Ω)

(75)
with usual notation and last term represent the Coriolis force.

Considering the energy equations which obeys the Fourier’s laws and ignoring the primes we
get [6],(

ρ0
∂

∂t
− η52

)
52 w = ρ0αtg52

1 T − 2ρ0Ω
∂ξ

∂z
− µ0Kβ

∂

∂z
(52

1ϕ) +
µ0K

2β

1 + χ
(52

1T ) (76)

where η = η0[1+ δµ0(M0 +H0)] and ξ =
∂v

∂x
− ∂u
∂y

is the z- component of the vorticity arising

due to rotation and an equation is obtained for ξ

ρ0
∂ξ

∂t
= η52 ξ + 2ρ0Ω

∂w

∂z
(77)

linearisation the above equations,

ρ0C0
∂T

∂t
− µ0T0K

∂

∂t

(
∂ϕ

∂z

)
= kt52 T +

[
ρ0C0 −

µ0T0K
2

1 + χ

]
wβ (78)

leads to (
1 +

M0

H0

)
52

1 ϕ+ (1 + χ)
∂2ϕ

∂z2
−K∂T

∂z
= 0 (79)
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The normal mode hypothesis and expanded in the form

f(x, y, z, t) = f(z, t) expi(lx+my) (80)

where l and m are wave numbers in the x and y directions respectively,[
ρ0
∂

∂t
− η(D2 − a2)

]
(D2 − a2)w = −a2αtgΘ + a2µ0KβDϕ−

a2µ0K
2β

1 + χ
Θ− 2ρ0ΩDξ

(81)

ρ0
∂ξ

∂t
= η(D2 − a2)ξ + 2ρ0ΩDw (82)(

1− µ0K
2T0

(1 + χ)ρ0C0

)
ωβ =

∂Θ

∂t
−K(D2 − a2)Θ− µ0KT0

ρ0C0

∂

∂t
(Dϕ) (83)

0 = (1 + χ)2ϕ−
(

1 +
M0

H0

)
a2ϕ−KDΘ (84)

Simplified by dimensionless variables as,

(x∗, y∗, z∗) =
(x
d
,
y

d
,
z

d

)
ω∗ =

d

v
ω

Θ∗ =
k

βνd
Θ

Φ∗ =
(1 + χ)k

Kβνd2
Φ

t∗ =
νt

d2

ξ∗ =
d2ξ

ν

∴ We obtain,[
(1 + Λ)(D2 − a2)− ∂

∂t

]
(D2 − a2)ω = Ta

1
2Dξ +Rta

2Θ +Rma
2(Θ−Dϕ) (85)[

(1 + Λ)(D2 − a2)− ∂

∂t

]
ξ = −Ta

1
2Dξ (86)

(D2 − a2 − Pr ∂
∂t

Θ + PrM2
∂

∂t
Dϕ = −(1−M2)ω (87)

(D2 −M3a
2)ϕ−DΘ = 0 (88)

By reducing we get,[
(1 + Λ)(D2 − a2)− ∂

∂t

]
(D2 − a2)ω = Ta

1
2Dξ +Rta

2Θ +Rma
2(DΦ−Θ) (89)

[(1 + Λ)(D2 − a2)− ω]ξ = −Ta
1
2DW (90)

(D2 − a2 − Prω)Θ = −W (91)
(D2 −M3a

2)Φ−DΘ = 0 (92)
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solving with the boundary conditions

W = DW = DΘ = ξ = 0 at z = 0 (93)

W = (1 + Λ)D2W +Maa
2Θ = Dξ = DΘ +BiΘ = 0 at z = 1 (94)

The above equations are solved by employing the Galerkin technique and regular perturbation
method and observed the values obtained by both methods complement each other.

3 Conclusion

1. The study reveals that increase in the value of magnetic field dependent viscosity pa-
rameter Λ and Biot number Bi effects in delaying, where as increase in the value of
magnetic Rayleigh number Rm and non linearity of fluid magnetization parameter M3 is
to advance the onset of Benard-Marangoni ferroconvection. Further increase in Bi and
Λ as well as decrease in M1 and M3 values decreases the dimension of the convection
cells. Also as M3 −→∞, the results to Benard - Marangoni problem for ordinary fluids.

2. The study reveals that the increased value in magnetic Rayleigh number Rm and the
internal heat generation source strength Ns together is to reinforce and hasten the onset
of Benard - Marangoni ferroconvection , where as the non-linearity of fluid magnetization
parameter M3 and magnetic number M1(in the absence of internal heat generation) has
no effect.

3. The viscosity parameter B has a dual effect on the system depending upon the strength
of the system initially but a reverse once B exceeds certain threshold value. Further
the increase in the Marangoni number and magnetic Rayleigh number will reinforce and
hasten the onset of ferroconvection.

4. The presence of coriolis force due to rotation is to reduce the intensity of Benard -
Marangoni convection in a rotating ferrofluid layer and the effect of increasing the values
of Biot number Bi and MFD viscosity parameter Λ is to delay with increasing value of a
magnetic parameter M1 is to advance the onset of Benard - Marangoni convection.
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Absract: Magnetohydrodynamic(MHD) flows have applications in meteorology, solar physics,
cosmic fluid dynamics, astrophysics, geophysics and in the motion of earth’s core. In ad-
dition from the technological point of view, MHD free convection flows have significant
applications in the field of stellar and planetary magnetospheres, aeronautical plasma
flows, chemical engineering and electronics. The object of the present paper is, “the study
of MHD effects on a free convection boundary layer flow past a semi-infinite moving ver-
tical plate embedded in a porous medium”. The governing equations are transformed by
using similarity transformation and the resultant dimensionless equations are solved nu-
merically using Homotopy Analysis Method. The effects of various governing parameters
on the velocity, temperature, concentration, skin-friction coefficient, Nusselt number and
Sherwood number are analyzed in detail.

Keywords: Homotopy analysis method, Heat and mass transfer, skin-fricrion, Nusselt num-
ber, Sherwood number

Subject Classification Code :

1 Introduction

MHD Free Convection Flow Past a Semi Infinite Moving Vertical Porous
Plate Embedded in a Porous Medium

Combined heat and mass transfer (or double-diffusion) in fluid-saturated porous media finds
applications in a variety of engineering processes such as heat exchanger devices, petroleum
reservoirs, chemical catalytic reactors and processes, geothermal and geophysical engineering,
moisture migration in a fibrous insulation and nuclear waste disposal and others. Double dif-
fusive flow is driven by buoyancy due to temperature and concentration gradients. Bejan and
Khair [1] investigated the free convection boundary layer flow in a porous medium owing to
combined heat and mass transfer. Lai and Kulacki[2] used the series expansion method to inves-
tigate coupled heat and mass transfer in natural convection from a sphere in a porous medium.
The suction and blowing effects on free convection coupled heat and mass transfer over a ver-
tical plate in a saturated porous medium were studied by Raptis et al.[3] and Lai and Kulacki
[4] respectively. Magnetohydrodynamic flows have applications in meteorology, solar physics,
cosmic fluid dynamics, astrophysics, geophysics and in the motion of earth’s core. In addition
from the technological point of view, MHD free convection flows have significant applications
in the field of stellar and planetary magnetospheres, aeronautical plasma flows, chemical engi-
neering and electronics. An excellent summary of applications is given by Huges and Young
[5]. Soundalgekar et al.[6] analyzed the problem of free convection effects on Stokes problem
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for a vertical plate under the influence of transversely applied magnetic field with mass transfer.
Raptis [7] studied mathematically the case of time varying two dimensional natural convective
flow of an incompressible, electrically conducting fluid along an infinite vertical porous plate
embedded in a porous medium. Helmy [8] analyzed MHD unsteady free convection flow past
a vertical porous plate embedded in a porous medium. Elabashbeshy [9] studied heat and mass
transfer along a vertical plate in the presence of magnetic field. Chamkha and Khaled [10]
investigated the problem of coupled heat and mass transfer by magnetohydrodynamic free con-
vection from an inclined plate in the presence of internal heat generation or absorption. Kim
[11] studied unsteady MHD convective heat transfer past a semi-infinite vertical porous moving
plate with variable suction by assuming that the free stream velocity follows the exponentially
increasing small perturbation law. Chamkha [12] extended the problem of Kim[11] to heat ab-
sorption and mass transfer effects. The object of the present paper is to study the MHD effects
on a free convection boundary layer flow past a semi-infinite moving vertical plate embedded
in a porous medium. The governing equations are transformed by using similarity transforma-
tion and the resultant dimensionless equations are solved numerically using the Runge-Kutta
method with shooting technique. The effects of various governing parameters on the velocity,
temperature, concentration, skin-friction coefficient, Nusselt number and Sherwood number
are shown in figures and tables and analyzed in detail.

2 Mathematical Analysis

A steady two-dimensional hydromagnetic flow of a viscous incompressible, electrically
conducting and viscous dissipating fluid past a semi-infinite moving vertical porous plate em-
bedded in a porous medium is considered. The flow is assumed to be in the x− direction,
which is taken along the semi-infinite plate and y− axis normal to it. The plate is maintained at
a constant temperature Tw, which is higher than the constant temperature T∞ of the surround-
ing fluid and a constant concentration Cw, which is greater than the constant concentration C∞
of the surrounding fluid. A uniform magnetic field is applied in the direction perpendicular to
the plate. The fluid is assumed to be slightly conducting, and hence the magnetic Reynolds
number is much less than unity and the induced magnetic field is negligible in comparison with
the applied magnetic field. It is further assumed that there is no applied voltage, so that electric
field is absent. It is also assumed that all the fluid properties are constant except that of the
influence of the density variation with temperature and concentration in the body force term
(Boussinesq’s approximation). Then, under the above assumptions, the governing equations
are,

Continuity equation:
∂u

∂x
+
∂v

∂y
= 0 (1)

Momentum equation:

u
∂u

∂x
+ v

∂u

∂y
= v

∂2u

∂y2
+ gβ(T − T∞) + gβ∗(C − C∞)− σB2

0

ρ
u− v

K ′
u (2)

Energy equation:

u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
(3)
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Species equation:

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
(4)

The boundary conditions for the velocity, temperature and concentration fields are,

u = U0, v = v0(x), T = Tw, C = Cw at y = 0

u→ 0, v → 0, T → T∞, C → C∞ as y →∞ (5)

where U0 is the uniform velocity of the plate and v0(x) - the suction vecolity at the plate, u,v-
the velocity components in directions respectively, ρ- the fluid density, g - the acceleration due
to gravity, β and β∗ - the permeability of the porous medium, T - the temperature of the fluid in
the boundary layer, ν - the kinematic viscosity, σ - the electrical conductivity of the fluid, T∞ -
the temperature of the fluid far away from the plate, α- the thermal diffusivity, C - the species
concentration in the boundary layer, C∞ - the species concentration in the fluid far away from
the plate, B0 - the magnetic induction, k - the thermal conductivity, cp- the specific heat at
constant pressure, and D- the mass diffusivity.

The equations (2)-(4) are nonlinear partial differential equations and hence analytical so-
lution is not possible.Therefore numerical technique is employed to obtain the required solu-
tion. Numerical computations are greatly facilitated by non-dimensionalization of the equa-
tions. Proceeding with the analysis, we introduce the following similarity transformations and
dimensionless variables which will convert the partial differential equations from two inde-
pendent variables (x, y) to a system of coupled, non-linear ordinary differential equations in a
single variable (η ) i.e., coordinate normal to the plate.

In order to write the governing equations and the boundary conditions in dimensionless
form, the following non-dimensional quantities are introduced.

η = y

√
U0

2vx
, ψ =

√
vxU0f(η), θ(η) =

T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

,

u =
∂ψ

∂y
, v = −∂ψ

∂x
,Gr =

gβ(Tw − T∞)x3

υ2
, Gm =

gβ∗(Cw − T∞)

υ2
,

M =
2σB2

0x

ρU0

, P r =
υcp
k
,K =

υx

K ′U∞
(6)

where ψ is the stream function, θ - the non-dimensional temperature function, φ - the non-
dimensional concentration, Gr - the thermal Grashof number, Gm - the solutal Grashof num-
ber, M - the magnetic field parameter, K - the permeability parameter, Pr - the Prandtl number
and Sc - the Schmidt number.

The mass conservation equation (1) is satisfied by the Cauchy-Riemann Equations,
u =

∂ψ

∂y
v = −∂ψ

∂x
.

In view of the equation (6) and following the analysis of Chamkha and Issa [13], the equations
(2), (3) and (4) reduce to the following non-dimensional form,

f ′′′ + ff ′′ +Grθ +Gmφ− (M +K)f ′ = 0 (7)

θ′′ + Prfθ′ = 0 (8)
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φ” + Scfφ′ = 0 (9)

The corresponding boundary conditions are,
f = fw, f

′ = 1, θ = 1, φ = 1 at η = 0

f ′ → 0, θ → 0, φ→ 0 as η →∞ (10)

where f is the dimensionless stream function, fw = −ν0
√

2x

vU0

is the dimensionless suction

velocity and primes denote partial differentiation with respect to the variable η.

The skin-friction coefficient, Nusselt number and Sherwood number are important physical
parameters for this type of boundary layer flow. Knowing the velocity field, the skin-friction at
the plate can be obtained, which in non-dimensional form is given by,

Cf = 2(Re)−
1

2
f ′′(0)

Knowing the temperature field, the rate of heat transfer coefficient can be obtained, which in
non-dimensional form, in terms of the Nusselt number, is given by,

Nu = −(Re)
1
2f ′′(0)

Knowing the concentration field, the rate of mass transfer coefficient can be obtained, which in
non-dimensional form, in terms of the Sherwood number, is given by,

Sh = −(Re)
1
2φ′(0)

where Re =
U0x

v
is the Reynolds number.

3 Solution of the Problem

The set of coupled non-linear governing boundary layer equations (7) - (9) together with the
boundary conditions (10) are solved numerically by using Runge-Kutta fourth order technique
along with shooting method. First of all, higher order non-linear differential equations (7)- (9)
are converted into simultaneous linear differential equations of first order and they are further
transformed into initial value problem by applying the shooting technique (Jain et al. [14]). The
resultant initial value problem is solved by employing Runge-Kutta fourth order technique. The
step size ∆η = 0.05 is used to obtain the numerical solution with five decimal place accuracy
as the criterion of convergence. From the process of numerical computation, the skin-friction
coefficient, the Nusselt number and the Sherwood number, which are respectively proportional
to f ′′(0), −θ′(0) and −φ”(0) , are also sorted out and their numerical values are presented in a
tabular form.

4 Result and Discussions

1. As a result of the numerical calculations, the dimensionless velocity, temperature and
concentration distributions for the flow under consideration are obtained and their be-
haviour have been discussed for variations in the governing parameters viz., the thermal
Grashof number Gr, solutal Grashof number Gm, magnetic field parateter M , permtabil-
ity parameter K, Prandtl number Pr, Schmidt number Gc and suction parameter fw.
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2. For various values of the magnetic parameter M, the velocity profiles are plotted in Figure
(a). It can be seen that as M increases, the velocity decreases. This result qualitatively
agrees with the expectations, since the magnetic field exerts a retarding force on the free
convection flow.

3. The effect of the permeability parameter K on the velocity field is shown in Figure (b).
The parameter K is inversely proportional to the actual permeability K ′ of the porous
medium. An increase in K will therefore increase the resistance of the porous medium
(as the permeability physically becomes less with increasing (K ′) which will tend to
decelerate the flow and reduce the velocity. This behaviour is evident from Figure (b).

4. The influence of the thermal Grashof number on the velocity is presented in Figure (c).
The thermal Grashof numberGr signifies the relative effect of the thermal buoyancy force
to the viscous hydrodynamic force in the boundary layer. As expected, it is observed that
there is a rise in the velocity due to the enhancement of thermal buoyancy force. Here,
the positive values of Gr correspond to cooling of the plate. Also, as Gr increases,
the peak values of the velocity increases rapidly near the porous plate and then decays
smoothly to the free stream velocity. Figure (d) presents typical velocity profiles in the
boundary layer for various values of the solutal Grashof number Gm, while all other
parameters are kept at some fixed values. The solutal Grashof number Gm defines the
ratio of the species buoyancy force to the viscous hydrodynamic force. As expected,
the fluid velocity increases and the peak value is more distinctive due to increase in the
species buoyancy force. The velocity distribution attains a distinctive maximum value in
the vicinity of the plate and then decreases properly to approach the free stream value

5. Figure (e) illustrate the velocity profile for different values of the Prandtl number Pr.
The Prandtl number defines the ratio of momentum diffusivity to thermal diffusivity. The
numerical results show that the effect of increasing values of Prandtl number results in a
decreasing velocity. The reason is that smaller values Pr of are equivalent to increasing
the thermal conductivities, and therefore heat is able to diffuse away from the heated
plate more rapidly than for higher values of Pr. Hence in the case of smaller Prandtl
numbers as the boundary layer is thicker and the rate of heat transfer is reduced.

6. The influence of the Schmidt number Scon the velocity profiles are plotted in Figure
(f). The Schmidt number embodies the ratio of the momentum to the mass diffusivity.
The Schmidt number therefore quantifies the relative effectiveness of momentum and
mass transport by diffusion in the hydrodynamic (velocity) and concentration (species)
boundary layers. This causes the concentration buoyancy effects to decrease yielding a
reduction in the fluid velocity.

7. Figure (g) illustrates the influence of the suction parameter fw on the velocity. It is
observed that an increase in the suction parameter results in a decrease in the velocity.
Figure (h) shows the effect of Prandtl number Pr on the temperature. It is seen that the
temperature decreases as the Prandtl number increases. Figure (i) depict the concentra-
tion profiles for different values of the Schmidt number Sc. It is noticed that an increase
in the Schmidt number Sc results in a decrease in the concentration within the boundary
layer.

8. The effects of various governing parameters on the skin-friction coefficient Cf , Nusselt
number Nu and the Sherwood number Sh are shown in Table 1., it is observed that as Gr
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increases, there is a rise in the skin-friction coefficient, Nusselt number and the Sherwood
number. As Gm increases the skin-friction coefficient and Sherwood number increase,
where as the Nusselt number decreases. AsM increases, there is a fall in the skin-friction
coefficient and there is a rise in both the Nusselt number and the Sherwood number. As
Pr increases there is a fall in the skin-friction coefficient and a rise in the Nusselt number.
As Sc increases there is a rise in the Sherwood number.

Gr Gm M Pr Sc Cρ Nu Sh
2.0 2.0 1.0 0.71 0.6 1.36639 1.82378 0.71743
4.0 2.0 1.0 0.71 0.6 1.93338 2.27858 1.07356
2.0 4.0 1.0 0.71 0.6 2.16667 1.82073 1.25739
2.0 2.0 2.0 0.71 0.6 1.25874 2.88405 1.46477
2.0 2.0 2.0 1.0 0.6 0.68509 3.45210 1.46477
2.0 2.0 2.0 1.0 0.78 0.68509 3.45210 1.84218

Table 1: Numerical values of the skin-friction coefficient, Nauseate and Sherwood numbers

Graphs

(a) Velocity profile for different values of M (b) Velocity profile for different values of K

(c) Velocity profile for different values of Gr (d) Velocity profile for different values of Gm

(e) Velocity profile for different values of Pr (f) Velocity profile for different values of Sc
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(g) Velocity profile for different values of Fw (h) Temperature profile for different values of Pr

(i) Concentration profile for different values of Sc
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Absract: In this paper we will focus on the Finite difference method involved in solving
systems of nonlinear boundary value problems for ordinary differential equations. Here,
we have applied Successive iteration method and Newton method to find the unknowns
which is later compared with the exact solution. We will give some applications as well
as the advantages and disadvantages of Finite difference method. And we will solve few
boundary value problem of a nonlinear ordinary differential equation using finite differ-
ence method.
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eration method and Newton method and Truncation error.
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1 Introduction

The finite difference approximations for the derivatives are one of the simplest and old-
est methods to solve differential equations. It was already known by L. Euler (1707-1783) in
the year 1768, in one dimension of space and was probably extended to dimension two by C.
Runge (1856-1927) in the year 1908. The advent of finite difference techniques in numerical
applications began in the early 1950s and their development was stimulated by the emergence
of computers that offered a convenient framework for dealing with complex problems of sci-
ence and technology.

The principle of finite difference methods is similar to the numerical schemes used to solve
ordinary differential equations. The domain is partitioned in space and approximations of the
solution are compute at the space. The error between the numerical solution and the exact so-
lution is determined by the error that is committed by going from a differential operator to a
difference operator. This error is called the discretization error or truncation error. The term
truncation error reflects the fact that a finite part of a Taylor series is used in the approximation.

In Math 3351, Courtney Remani focused on solving nonlinear equations involving only
a single variable. They used many methods like Newton’s method, the Secant method, and
the Bisection method and also they examined numerical methods such as Runge-Kutta method
that are used to solve initial-value problems for Ordinary differential equations. They focused
only on solving nonlinear equations with only one variable rather than nonlinear equations with
several variable. [1]
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2 Finite Difference Method
Finite difference methods (FDM) are numerical methods for solving differential equations

by approximating them with difference equations, in which finite differences approximate the
derivatives. Finite difference method convert a non-linear ordinary differential equations into a
system of non-linear equations which can be solved by matrix algebra techniques. It computes
the solutions numerically at a predefined set of discrete points in the structured grid of a com-
putational domain. These discrete points along with their inter connections are called nodal
points of the grid or mesh. The procedure of identifying the grid points for a given domain is
called the discretization of the domain, which is the first step in the finite difference method. [2]

The finite difference method approximates the differential operator by replacing the deriva-
tives in the equation using differential quotients, which involve values of the solution at discrete
mesh points in the domain under study. Repeated applications of this representation set up al-
gebraic systems of equations in terms of unknown mesh point values. The method is a classical
one, having been established almost a century ago. Timoshenko and Goodier (1970) provided
some details on its applications in elasticity. The major difficulty with this scheme lies in the
inaccuracies in dealing with regions of complex shape, although this problem can eliminated
through the use of coordinate transformation techniques. [3]

Weighted residual methods form a class of methods that can be used to solve differential
equations. They make use of approximation functions that are appropriately weighted in order
to find a solution which approximates the solution to the differential equations as closely as
possible. Weighted residual methods are used in several other commonly encountered meth-
ods for solving differential equations numerically. It forms the basis for most of the numerical
schemes.

The concept of FDM is focused on approximating differentials. In contrast to this, weighted
residual methods evaluate the integral of differential equation and optimize an approximation
such that the integrals of the correct and the approximated solutions match on a given domain.
Therefore these equations use integral approximations. FDM uses an approximation of the dif-
ferential of the differential equation. Hence it is a differential approximation. The mathematics
of FDM is based on Taylor series approximations. The most common equations are

• Central finite difference scheme((6)), for approximating first derivatives.

• Forward finite difference scheme((4)), for approximating first derivatives.

• Backward finite difference scheme((5)), for approximating first derivatives.

• Central finite difference scheme((7)), for approximating second derivatives.

These schemes are used in many forms in numerical solvers. The difference in the solution
i.e. the finite change of the solution is approximated on a very small finite interval using one
of these equations. All of these equations are linear i.e. the solution is linearly approximated.
Obviously, this approximation is only correct if the interval on which the function is linearized
is sufficiently small. Otherwise, the solution becomes inexact [4].

The particular difference quotient and step size h are chosen to maintain a specified order
of truncation error. However, h cannot be chosen too small because of the general instability of
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the derivative approximation. In the finite difference method, the approximation solutions are
found by solving a set of algebraic equations that are the discrete representation of the govern-
ing differential equations and the boundary conditions. The discrete representation is formed
by replacing the derivatives in the governing equations and the boundary conditions with ap-
proximations expressed in terms of difference between nodal displacements [5].

The finite difference method for the nonlinear equation requires the replacement of y′′ and
y′ by difference quotients, which results in a nonlinear system. This system can be solved using
successive iterative method and Newton’s method.

Newton’s method, also known as the Newton–Raphson method, named after Isaac Newton
and Joseph Raphson, is a root-finding algorithm which produces successively better approxi-
mations to the roots (or zeros) of a real-valued function. It is a powerful technique for solving
equations numerically. It is based on the simple idea of linear approximation. The Newton
method, properly used on a root with devastating efficiency. The Newton-Raphson method is
widely used in finding the root of nonlinear equations. Newton’s method converges quadrati-
cally. While carrying out this method the system converges quite rapidly once the approxima-
tion is close to the actual solution of the nonlinear system. This is seen as a advantage because
Newton’s method required less iterations, compared to another method with a lower rate of
convergence, to reach the solution. However, when the system does not converge then an error
in the computations occurs or a solution may not exist [6].

2.1 Advantages and Disadvantages of Finite Difference Method

An important advantage of the finite difference method is its simplicity. Another advan-
tage is the possibility to easily obtain high order approximations, and hence to achieve high
order accuracy of the spatial discretization. On the other hand, because the method requires a
structured grid, the range of application is clearly restricted. Furthermore, the finite difference
method cannot be directly applied in body-fitted(curvilinear) coordinates, but the governing
equation have to be first transformed into a Cartesian coordinate system. The problem herewith
is that the Jacobian coordinate transformation appears in the flow equations. This Jacobian has
to be discretized consistently in order to avoid the introduction of additional numerical errors.

Finite difference methods are the easiest numerical method to understand and implement
differential equations, for problems that satisfy its structured discretization assumptions, and
can be useful in other domain when we need to estimate other derivatives. It is most transparent
and the most general method among the various numerical approaches. It has a straight forward
nature and a minimum requirement on hardware.

The problem with finite difference method is that in their most basic form, aren’t applicable
to unstructured domains. It is difficult to solve large, sparse system of matrices. Approximation
property will ensure the error (difference between exact solution and finite difference method).
They quickly become unwieldy if we need to start adding any sort of complexity like moving
boundaries or an unstructured grid.

The FDM has better stability characteristics, but they generally requires more computation
to a specified accuracy. The approximations may not be as accurate as the other numerical
method for non-linear equation, there is less sensitivity to round off error.
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2.2 Applications
1. Finite difference method’s are very viable numerical methods for solution of partial dif-

ferential equation and hence is suitable for solving plate binding equation. This method
is sufficiently accurate for this thin plate analysis.

2. It is used in Power-flow problem formulation. Due to the nonlinear nature of this prob-
lem, numerical methods are employed to obtain a solution that is within an acceptable
tolerance. The solution to the Power-flow problem begins with identifying the known
and unknown variables in the system. Hence FDM’s are used.

3. Finite difference methods (FDM) are used to numerically solve the elastodynamic wave
equations. Finite difference techniques are applied to approximate both the time and
space derivatives and are combined in various ways to provide different numerical algo-
rithms for modeling elastic wave propagation.

4. The finite difference method is directly applicable only to rather simple geometries.
Nowadays, it is utilized in the research of turbulent flows and together with immersed
boundary cells in biology.

5. The FDM is a time-domain technique, which can find the concentration of dye every-
where in the computational domain at a given time frame. Burley etal.,Wai and Vosoughi
solved their convective dye transfer model equation by the FDM presented the results in
the form of a number of graphs representing the variation in the concentration of dye at
various points in the dyeing machine with time. Shannon etal. used the finite difference
method to obtain the solution of their flow model equations, which predicts pressure and
velocity profiles based on user defined package geometry, permeability profile and fluid
properties. [7]

2.3 Theorem
Suppose the function f in the boundary value problem,

y′′ = f(x, y, y′), a ≤ x ≤ b, y(a) = α and y(b) = β

is continuous on the set,

D = ((x, y, y′)|a ≤ b,−∞ < y <∞,−∞ < y′ <∞

and that the partial differential derivatives fy and fy′ are also continuous in D. If,

1. fy(x, y, y′) > 0 for all (x, y, y′) ∈ D, and

2. a constant M exists with |fy(x, y, y′)| < M∀ (x, y, y′) ∈ D, then the boundary value
problem has a unique solution.

The numerical method we will be looking at is the finite difference method. This method
can be used to solve both linear and nonlinear ordinary differential equations. Here we are
considering the nonlinear finite difference method. Let nonlinear boundary value problem is of
the form,

y′′ = f(x, y, y′), a ≤ x ≤ b, y(a) = α and y(b) = β.

In order for the finite difference method to be carried out we have to assume f satisfies the
following conditions,
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1. f and the partial derivatives fy and fy′ are all continuous on

D = {(x, y, y′)|a ≤ x ≤ b,−∞ < y, y′ <∞}

2. fy(x, y, y′) ≥ δ on D, for some δ > 0.

3. Constants k and L exists, with

k = max(x,y,y′)∈D|fy(x, y, y′)| and L = max(x,y,y′)∈D|fy′(x, y, y′)|[8]

3 Methodology
Consider the nonlinear boundary value problems (BVPs) for the second order differential equa-
tion of the form,

y′′ = f(x, y, y′), a ≤ x ≤ b, y(a) = α and y(b) = β (1)

Consider the finite-difference method for y′(x) and y′′(x) be

y′(x) =
1

2h
(y(x+ h− y(x− h))− h2

6
y′′′(x???) (2)

y′′(x) =
1

h2
(y(x+ h)− 2y(x) + y(x− h))− h2

12
y′′′x???) (3)

where x??? is between x− h and x+ h.

By neglecting the higher order terms in equation (2) we get,

Forward difference approximation is,

y′ =
y(x+ h)− y(x)

h
(4)

Backward difference approximation is,

y′ =
y(x)− y(x+ h)

h
(5)

Adding equation (4) and (5) we obtain,

y′′ =
y(x+ h)− y(x− h)

2h
. (6)

Equation (6) is called central difference approximation for first order derivative.

By neglecting the higher order terms in equation (3) we get,

y′′ =
y(x+ h)− 2y(x) + y(x− h)

h2
(7)

Equation (7) is called central difference approximation for second order derivative.

Similar to the Finite difference method for linear boundary value problem we have, h =
b− a
N + 1

and

x0 = a
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x1 = a+ h

...
xN = a+Nh

xN+1 = a+ (N + 1)h = b

Let, y0 = α and yN+1 = β,

Apply central difference approximation formula to the equation (1) we get

1

h2
(yi+1 − 2i + yi−1) = f

(
xi, yi,

1

2h
(yi+1 − yi−1)

)
(8)

yi−1 − 2yi + yi+ 1− h2f
(
xi, yi,

1

2h
(yi+1 − yi−1

)
= 0

− yi−1 + 2yi − yi+ 1 + h2f(xi, yi,
1

2h
(yi+1 − yi−1) = 0. (9)

for i = 1, 2, · · ·N .

The N ×N nonlinear system of equations obtained from this method is,

1− y2 + h2f

(
x1, y1,

y2 − α
2h

)
− α = 0,

−y1 + 2y2 − y3 + h2f

(
x2, y2,

y3 − y1
2h

)
= 0,

... (10)

−yN−2 + 2yN−1 − yN = h2f

(
xN−1, yN−1,

yN − yN−2
2h

)
= 0,

−yN−1 + 2yN + h2f

(
(xN , yN ,

β − yN−1
2h

)
− β = 0.

Equation (10) can be written in matrix form as,

diag {−1, 2,−1}Y + h2F (x, Y ) = AY + h2F (x, Y ) = Y . (11)

where, Y = [y1, · · · yN ] ,

Y = [α, 0 · · · 0, β] ,

A =diag {−1, 2,−1}

and

F (x, Y ) = [F1(x, Y ) · · · FN(x, Y )], where Fi(x, Y ) = f

(
xi, yi,

1

2h
(yi+1 − yi−1)

)
.

(12)
We can find the initial approximation Yk by the following equation,

Yk = α +
β − α
b− a

(xi − α)
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where, xi = α + ih ∀ i = 1, 2, · · ·N .

It can be shown that the system of N nonlinear equations from (10) has a unique solution

if h <
2

L
where,∣∣∣∣∂f(x, y, y′)

∂y′

∣∣∣∣ ≤ L for all (x, y, y′) in D = {(x, y, y′)|a ≤ x ≤ b,−∞ < y, y′ <∞}

Generally, the nonlinear equation in (10) cannot be solved exactly and then y
(k)
1 · · · y

(k)
N are

solved iteratively.

Let the initial values be Y0 =
[
y
(0)
1 · · · y

(0)
N

]
, we have Yk =

[
y
(k)
1 · · · y

(k)
N

]
at the kth iteration

and solve Yk+1 using following methods.

3.1 Successive iteration method
Yk+1 is the solution of the following system of linear equations,

AYk+1 + h2F (x, Yk) = Y
AYk+1 = Y − h2F (x, Yk)

3.2 Newton method

Let G(x, Y ) = AY + h2F (x, Y )− Y = [g1(x, Y ) · · · gN(x, Y )].

The linearization of G(x, y) at Yk is,

G(x, Y ) ≈ G(x, yk) + J(x, Yk)(Yk+1 − Yk).
where,

J(x, Y ) =

[
∂gi(x, Y )

∂yj

]
=



∂g1
∂y1

∂g1
∂y2

· · · ∂g1
∂yN

∂g2
∂y1

∂g2
∂y2

· · · ∂g2
∂yN

...
...

...
...

∂gN
∂y1

∂gN
∂y2

· · · ∂gN
∂yN


is the Jacobi Matrix of G(x, Y ). Then solve the system of linear equations for Yk+1.

G(x, yk) + J(x, Yk)(Yk+1 − Yk) = 0
Yk+1 = Yk − [J(x, Yk)]

−1G(x, Yk).

where,
J(x, Y ) = A+ h2JF (x, Y )

JF (x, Y ) =

[
∂Fi(x, Y )

∂yj

]
JF (x, Y ) = diag

{
∂Fi(x, Y )

∂yj−1
,
∂Fi(x, Y )

∂yj
,
∂Fi(x, Y )

∂yj+1

}
In finite difference method, J(y1, y2, · · · , yN) is tridiagonal with ijth entry. This means

that there are non-zero entries on the diagonal below the main diagonal, and there are non-zero
entries on the diagonal directly above the main diagonal. [8]

57



MES Bulletin of Applied Sciences Volume 3, Issue 3, 2020

4 Examples and Discussions
Example 1: Use the nonlinear finite difference method with h = 0.25 to approximate the
solution to the boundary-value problem,

y′′ = 2y3, −1 ≤ x ≤ 0, y(−1) =
1

2
, y(0) =

1

3
.

Compare the results to the actual solution y(x) =
1

x+ 3
.

Given y′′ = 2y3, −1 ≤ x ≤ 0, y(−1) =
1

2
, y(0) =

1

3

Let x = [−1,−0.75,−0.5,−0.25, 0] and Y =


1

2
0
1

3


Yk = α +

β − α
b− a

(xi − a) =

0.83333
0.16666

0.25



F (x, y) =


f

(
x1, y1,

(
1

2h
(y2 − α)

))
f

(
x2, y2,

(
1

2h
(y3 − y1)

))
f

(
x3, y3,

(
1

2h
(β − y3)

))

 = 2

y31y32
y33

 and F (x, Yk) =

( 1
12

)3

(1
6
)3

(1
4
)3



1. Successive iteration method

AYk+1 = Y − h2F (x, Yk)

 2 −1 0
−1 2 −1
0 −1 2

y′1y′2
y
′
3

 =


1

2
0
1

3

− 1

16



(
1

12

)3

(
1

6

)3

(
1

4

)3


y′1y′2
y
′
3

 =

0.4519
0.4158
0.3741


2. Newton method

Yk+1 = Yk − [J(x, Yk)]
−1G(x, Yk)

G(x, Y ) = AY + h2F (x, Y )− Y

Let, f(x, y, y′) = 2y3 hence F (x, y) =

2y31
2y32
2y33

 and J(x, yk) =


1

48
0 0

0
1

12
0

0 0
3

16


B = A+ h2J(x, yk)
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B =

2.0026 −1 0
−1 2.0104 −1
0 −1 2.0234


b = Ayk + h2F (x, yk)− Y

b =

−0.4999
0.00028
0.00094


Yk+1 = Yk −B−1b

Yk+1 =

0.4551
0.4114
0.3705


Exact Solution Numerical solution

Successive iteration Newton method
1 0.44444 0.4519 0.4551
2 0.4 0.4158 0.3705
3 0.3636 0.3741 0.3705

Example 2: Use the nonlinear finite difference method with h = 0.25 to approximate the
solution to the boundary-value problem,

y′′ = −e−2y, 1 ≤ x ≤ 2, y(1) = 0, y(2) = ln(2).

Compare the results to the actual solution lnx.

Given y′′ = −e−2y, 1 ≤ x ≤ 2, y(1) = 0, y(2) = ln(2)

Let, x = [−1,−0.75,−0.5,−0.25, 0] and Y = [0, 0, 0.693147]

Yk = α +
β − α
b− a

(xi − a) =

 0.173286
0.3465735

0.511986025



F (x, Yk) =


f

(
x1, y1,

(
1

2h
(y2 − α)

))
f

(
x2, y2,

(
1

2h
(y3 − y1)

))
f

(
x3, y3,

(
1

2h
(β − y3)

))

 =

e−2y1

e−2y2

e−2y3

 =

−0.707107905
−0.50000009
−0.353553486



1. Successive iteration method

AYk+1 = Y − h2F (x, Yk) 2 −1 0
−1 2 −1
0 −1 2

y′1y′2
y
′
3

 =

 0
0

0.693147

− 1

16

−0.707107905
−0.50000009
−0.353553486


y′1y′2
y
′
3

 =

0.2275817
0.4109692
0.5631066


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2. Newton method

Yk+1 = Yk − [J(x, Yk)]
−1G(x, Yk)

G(x, Y ) = AY + h2F (x, Y )− Y

Let, f(x, y, y′) = 2y3.

Hence F (x, y) =

−0.707107905
−0.50000009
−0.353553486

 and J(x, Yk) =

1.4142113, 0, 0
0, 1.999999, 0
0, 02.828426


B = A+ h2J(x, Yk)

B =

1.9116118 −1 0
−1 1.87500001
0 −1 1.8232234


b = Ayk + h2F (x, Yk)− Y

b =

−0.0441957
−0.0312493
−0.0220971


Yk+1 = Yk −B−1b

Yk+1 =

0.2396983
0.4293324
0.5773716


Exact Solution Numerical solution

Successive iteration Newton method
1 0.2231435 0.2275817 0.2396983
2 0.4054651 0.4109692 0.4293324
3 0.5596157 0.5631066 0.5773716

Example 3: Use the nonlinear finite difference method with h = 0.1 to approximate the solu-
tion to the boundary-value problem

y′′ = 2y3 − 6y − 2x3, −1 ≤ x ≤ 2, y(1) = 2, y(2) =
5

2
and Yk = [2, 2, 2, 2, 2, 2, 2, 2, 2]

Compare the results with the actual solution x+ x−1.

Given y′′ = 2y3 − 6y − 2x3, −1 ≤ x ≤ 2, y(1) = 2, y(2) =
5

2
, Yk = [2, 2, 2, 2, 2, 2, 2, 2, 2]

Let, x = [1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2]

Y =



2
0
0
0
0
0
0
0
5

2


, F (x, Yk) =



2y31 −6y1 −2x31
2y32 −6y2 −2x32
2y33 −6y3 −2x33
2y34 −6y4 −2x34
2y35 −6y5 −2x35
2y36 −6y6 −2x36
2y37 −6y7 −2x37
2y38 −6y8 −2x38
2y39 −6y9 −2x39


, F (x, Y0) =



1.8
1.6
1.4
1.2
1

0.8
0.6
0.4
0.2


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1. Successive iteration method

AYk+1 = Y − h2F (x, Yk)

2 −1 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0
0 0 0 −1 2 −1 0 0 0
0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 0 −1 2





y
′
1

y
′
2

y
′
3

y
′
4

y
′
5

y
′
6

y
′
7

y
′
8

y
′
9


=



2
0
0
0
0
0
0
0
5

2


− 1

16



1.8
1.6
1.4
1.2
1

0.8
0.6
0.4
0.2




y
′
1

y
′
2

y
′
3

y
′
4

y
′
5

y
′
6

y
′
7

y
′
8

y
′
9


=



1.993
2.004
2.031
2.072
2.125
2.188
2.259
2.336
2.417


2. Newton method

Yk+1 = Yk − [J(x, Yk)]
−1G(x, Yk)

G(x, Y ) = AY + h2F (x, Y )− Y

Let, f(x, y, y′) = 2y3 − 6y − 2x3

F (x, YK) =



2y31 −6y1 −2x31
2y32 −6y2 −2x32
2y33 −6y3 −2x33
2y34 −6y4 −2x34
2y35 −6y5 −2x35
2y36 −6y6 −2x36
2y37 −6y7 −2x37
2y38 −6y8 −2x38
2y39 −6y9 −2x39


, J(x, Yk) =



6 0 0 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0
0 0 0 6 0 0 0 0 0
0 0 0 0 6 0 0 0 0
0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 0 6


B = A+ h2J(x, Yk)

B =



2 −1 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0
0 0 0 −1 2 −1 0 0 0
0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 0 −1 2


+

1

100



6 0 0 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0
0 0 0 6 0 0 0 0 0
0 0 0 0 6 0 0 0 0
0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 0 6


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B =



2.060 −1 0 0 0 0 0 0 0
−1 2.06 −1 0 0 0 0 0 0
0 −1 2.060 −1 0 0 0 0 0
0 0 −1 2.060 −1 0 0 0 0
0 0 0 −1 2.06 −1 0 0 0
0 0 0 0 −1 2.06 −1 0 0
0 0 0 0 0 −1 2.06 −1 0
0 0 0 0 0 0 −1 2.06 −1
0 0 0 0 0 0 0 −1 2.06



b = Ayk + h2F (x, Yk)− Y

b =



2 −1 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0
0 0 0 −1 2 −1 0 0 0
0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 0 −1 2





2
2
2
2
2
2
2
2
2


+

1

100



1.8
1.6
1.4
1.2
1

0.8
0.6
0.4
0.2


−



2
0
0
0
0
0
0
0
5

2



b =



0.018
0.016
0.014
0.012
0.01
0.008
0.006
0.004
−0.498



Yk+1 = yk −B−1b

Yk+1 =



2
2
2
2
2
2
2
2
2


−



2.060 −1 0 0 0 0 0 0 0
−1 2.06 −1 0 0 0 0 0 0
0 −1 2.060 −1 0 0 0 0 0
0 0 −1 2.060 −1 0 0 0 0
0 0 0 −1 2.06 −1 0 0 0
0 0 0 0 −1 2.06 −1 0 0
0 0 0 0 0 −1 2.06 −1 0
0 0 0 0 0 0 −1 2.06 −1
0 0 0 0 0 0 0 −1 2.06



−1 

0.018
0.016
0.014
0.012
0.01
0.008
0.006
0.004
−0.498


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Yk+1 =



1.9814221
1.9797295
1.9928207
2.0194811
2.0593104
2.1126983
2.1808481
2.2658488
2.3708004


Exact Solution Numerical solution

Successive iteration Newton method
1 2.00 1.993 1.981421
2 2.033 2.004 1.9797295
3 2.069 2.031 1.9928207
4 2.114 2.072 2.0194811
5 2.166 2.125 2.0593104
6 2.225 2.188 2.1126983
7 2.288 2.259 2.1808481
8 2.355 2.336 2.2658488
9 2.246 2.417 2.3708004

5 Inference
In this chapter we studied about finite difference method which is a powerful method in not

only solving nonlinear algebraic equations with one variable, but also systems of nonlinear al-
gebraic equations. Finite difference methods are also influential in solving for boundary value
problems of nonlinear ordinary differential equations. In finite difference method we can solve
the nonlinear system by three methods they are successive iteration method, Newton’s method
and Crout factorization algorithm. Here, the finite difference method implements both Succes-
sive iteration method and Newton’s method once the boundary value problem was converted
into a nonlinear algebraic system of equations. By the above solved problems we can conclude
that successive iteration method provide highly accurate values in less number of iteration as
compared with Newton’s method. Several numerical examples are solved to illustrate the effi-
ciency and the performance of the finite difference method. It has better stability than shooting
methods for boundary value problems. Higher-order differences or extrapolation can be used
to improve accuracy. Finite difference method tend to less sensitive to round off error than
shooting method.
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