M E S COLLEGE OF ARTS, COMMERCE AND SCIENCE

'Vidyasagara', Prof. M P L Sastry Road, Malleswaram, Bengaluru 560003

A booklet on Course Outcome

An IQAC Initiative 2022 - 2023

Table of Contents

1.	Course Outcome Biotechnology	3
2.	Course Outcome Botany	6
3.	Course Outcome Chemistry	9
4.	Course Outcome Commerce	14
5.	Course Outcome Computer Science	19
6.	Course Outcome Economics	21
7.	Course Outcome Electronics	22
8.	Course Outcome of General English Courses:	26
9.	Course Outcome of the Optional English	26
10.	Course Outcome Hindi	27
11.	Course Outcome History	28
12.	Course Outcome Journalism	31
13.	Course Outcome Kannada	32
14.	Course Outcome Optional Kannada Bhasha Pathya	35
15.	Course Outcome Mathematics	38
16.	Course Outcomes Post Graduate Department of Mathematics	39
17.	Course Outcome Physics	45
18.	Course Outcome Psychology	52
19.	Course Outcome Sanskrit	57
20.	Course Outcome Sociology	58
21.	Course Outcome Statistics	59
22.	Course Outcome Zoology	60

BIOTECHNOLOGY		
Paper	Course Name	Course outcome
DSC- TIBTCIOI	CELL BIOLOGY AND GENETICS	 At the end of the course the student should be able to Understand concepts in Biotechnology and demonstrate knowledge acquired m interdisciplinary skills in cell biology and genetics Comprehend the structure of a cell with its organelles Understand the chromatin structure and its location Understand the basic principles of life, and how a cell divides Explain the organization of genes and chromosomes, chromosome morphology and its aberrations
DSC- T2BTC102	MICROBIOLOGICAL METHODS	
DCS -3T	BIOMOLECULES	 At the end of the course the student should be able to: Acquire knowledge about types of biomolecules, structure, and their functions Will be able to demonstrate the skills to perform bio analytical techniques Apply comprehensive innovations and skills of biomolecules to biotechnology field
DCS -4T	MOLECULARBIOLOGY	 At the end of the course the student should be able to Study the advancements in molecular biology with latest trends. Will acquire the knowledge of structure, functional relationship of protein sand nucleic acids. Aware about the basic cellular processes such as transcription, translation ,DNA replication and repair mechanisms.
BTT 501	GENETIC ENGINEERING AND EBT	 Students learn about genetic engineering and its application in the field of agriculture and medicine They learn to obtain gene rom the source and ligating it to the vector and transforming to a host cell to get the desired product DNA finger printing Biogas production, renewable and non-renewable resources Microbial production of H2, ethyl alcohol GM organisms and its application in bioremediation Importance of N2 fixing organisms and its production in large scale as biofertillizers, which helps in increasing the percentage of crop
BTP 502	GENETIC ENGINEERING AND EBT	 Research institute important basic techniques: DNA AND RNA isolation from plant and animal source Plasmid DNA isolation from E. coli Gel electrophoresis technique to separate DNA Protein separation technique by SDS PAGE Examination of bacteria in water Students learn about: Different types of immunity- innate, adaptive, cell mediated, humoral active and passive

BTT 601	IMMUNOLOGY AND ABT	 Antigens and its properties Antibodies, different types, properties and functions Production of antibodies Blood typing Complement system Hypersensitivity reactions in humans Animal tissue culture Types of media used for ATC Growth hormones – EGF, FGF, PDGF, IL-1 &2, NGF,
		 Erythropoeitin Techniques of disaggregation of animal tissue, primary and secondary culture Cell lines, examples and transformation of animal cell lines HAT selection, selectable markers, expression vectors , over production o and downstream processing of expressed proteins Transgenic animals and applications Monoclonal antibodies and applications
		Production of vaccines
BTP 602	IMMUNOLOGY AND ABT	 Pathologically important techniques: Blood grouping and WBC counting Diagnosis of typhoid and syphillis by WIDAL and VDRL METHOD ELISA techniques applicable to diagnose various virus and bacteria like dengue
		 : DOT ELISA and Sandwich ELISA Finding concentration of antigen in serum by rocket immune electrophoresis technique Finding identity of two antigens by ouchterlony double diffusion technique
		Serum separation from blood and serum precipitation technique
		Students learn about plant hormones
		Plant growth media
		 Micro propagation techniques
	PLANT	 Primary and secondary metabolites
BTT 701	BIOTECHNOLOGY	 Organ culture – ovary, ovule, anther, embryo and endosperm Somatic embryogenesis and somatic hybridization Transgenic plants and technique s of transformation Role of tissue culture in agriculture. Horticulture and forestry
		Intellectual property rights
		 Students learn the technique of: Plant tissue culture media
	PLANT	 Plants organ culture – callus, shoot tip, anther, nodal, ,
BTP 702	BIOTECHNOLOGY	suspension culturePreparation of industrially important synthetic seeds
		Isolation of protoplast for creating cybrids
		Students learn about : • Fermenters
		Techniques of fermentation
		 Downstream processing of fermented products
		 Methods of strain improvement
		 Upstream processing before termentation

ВТТ 801	INDUSTRIAL BIOTECHNOLOGY	 Production of microbial products – alcohol, organic compounds, antibiotic, aminoacids, Vitamin b12 Enzyme technology and its application Fermented food products – SCP and SCO Mass culture of spirullina, production of xanthum gum, saffranin, capascin, PHA and PHB
BTP	INDUSTRIAL	 Students learn industrially important basic techniques: Algal and fungal culture for mushroom, vitamins, antibiotic and acid production Estimation of acid and sugar Cell immobilization techniques Alcohol estimation by specific gravity method
802	BIOTECHNOLOGY	Industrial visits to various industries

BOTANY			
Paper	Course Name	Course outcome	
PAPER 1	MICROBIAL DIVERSITY AND TECHNOLOGY	 Understand the fascinating diversity, evolution, and significance of microorganisms. Comprehend the systematic position, structure, physiology and life cycles of microbes and their impact on humans and environment. Gain laboratory skills such as microscopy, microbial cultures, staining, identification, preservation of microbes for their applications in research and industry. 	
PAPER 2	DIVERSITY OF NON- FLOWERING PLANTS	 Understand the diversity and affinities among Algae, Bryophytes, Pteridophytes and Gymnosperms. Understand the morphology, anatomy, reproduction and life cycle across Algae, Bryophytes, Pteridophytes and Gymnosperms, and their ecological and evolutionary significance. Obtain laboratory skills/explore non-flowering plants for their commercial applications 	
BOT-A-3.1	PLANT ANATOMY AND DEVELOPMENTA L BIOLOGY	 The students will be able to: Observation of variations that exist in internal structure of various parts of a plant and as well as among different plant groups in support for the evolutionary concept. Skill development for the proper description of internal structure using botanical terms, their identification and further classification. Induction of the enthusiasm on internal structure of locally available plants. Understanding various levels of organization in a plant body with an outlook in the relationship between the structure and function through comparative studies. Observation and classification of the floral variations from the premises of college and house. Understanding the various reproductive methods sub-stages in the life cycle of plants Observation and classification of the embryological variations in angiosperms. Enthusiasm to understand evolution based on the variations in reproduction among plants 	
BOT-A-4.1	ECOLOGY AND CONSERVATION BIOLOGY	 reproduction among plants. The students will be able to: Understanding the fundamental concepts in ecology, environmental science and phytogeography. Concept development in conservation, global ecological crisis, Sustainable development and pros and cons of human intervention. Enable the student to appreciate bio diversity and the importance of various conservation strategies, laws and regulatory authorities and global issues related to climate change and sustainable development. 	

PAPER 5	TAXONOMY AND ECONOMIC BOTANY	 Students Learn Structure and modification of root, stem and leaf Morphological features of inflorescence, flower and fruit. Identification and characterization of plants based on the taxonomic characters and assign them to the respective families Use of technical terms for describing plants Use of ICBN rules Herbarium techniques How to study local flora Economic importance of different parts of plants and their significance
PAPER 6	MOLECULAR BIOLOGY, GENETIC ENGINEERING, BIOTECHNOLOG Y, AND PLANT PHYSIOLOGY	 Students Learn Quantitative analysis of starch, proteins, Reducing sugars and Lipids Determination of osmotic potential of cell sap by plasmolytic method Determination of Stomatal Index Streaming of protoplasm to show cyclosis Study of Osmosis and transpiration experiments Study of phloem transport by ringing Experiments
PAPER 7	CYTOLOGY, GENETICS, EVOLUTION AND PLANT BREEDING	 Students Learn Preparation of cytological stains Preparation of permanent slides of mitosis and meiosis using plant material Allium root tips and flowers Karyotype and Ideogram: Camera Lucida Drawing Plant Breeding Techniques Solve plant Genetic Problems
PAPER 8	PLANT PHYSIOLOGY III	 Defense mechanisms in plants Students learn Separation of photosynthetic pigments by paper chromatography and measure of Rf values Determination of rate of photosynthesis at different wavelength of light Determination of rate of photosynthesis at different concentration of CO2 Estimation of Ascorbic Acid content in plant sample Determination of RQ of carbohydrates, fats and proteins Determination of rate of growth in plants using ArC Auxanometer Study of manufacture of Alcohol/ Antibiotics/Enzymes at Industrial level by visit to any one of the Industry